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Abstract—Rank estimation is an important factor for low-rank
based matrix completion, and most works devoted to this problem
have considered the minimization of nuclear norm instead of
matrix rank. However, when nuclear norm minimization shifts
to ‘regularization’ due to noise, it is difficult to estimate original
matrix rank, precisely. In present paper, we propose a new fast
algorithm to precisely estimate matrix rank and perform comple-
tion without using nuclear norm. In our extensive experiments,
the proposed algorithm significantly outperformed nuclear-norm
based method for accuracy, especially and Incremental OptSpace
regarding computational time. Our model selection scheme has
many promising extensions for constrained matrix factorizations
and tensor decompositions, and these extensions could be useful
for wide range of practical applications.

I. INTRODUCTION

Matrix completion is an estimation procedure for missing
values of incomplete matrix by using only available elements
and structural properties. Particularly, the research of low-rank
matrix completion has been well progressed from theoretical
studies to applications in recent years [4], [3], [2], [12],
[10]. Main objective of low-rank matrix completion is to
minimize the rank of a matrix which completely fits to the
observed matrix for all available elements. However, since it is
the NP-hard non-convex optimization problem, nuclear-norm
minimization is employed for the optimization:

minimize ||X||∗, s.t. PΩ(X) = PΩ(M), (1)

where M ∈ RI×J is an observed matrix, X ∈ RI×J
is an output estimated matrix, Ω is a set of indices of
available elements, a projection operator PΩ(·) is defined by

[PΩ(X)]ij :=

{
Xij (i, j) ∈ Ω
0 otherwise

, the equality constraint

means Xij = Mij for (i, j) ∈ Ω, ||X||∗ =
∑min(I,J)
i=1 σi(X)

denotes the nuclear norm, and σi(X) denotes the ith largest
singular value of matrix X . The optimization problem (1)
is convex [13] and many efficient algorithms have been pro-
posed as Singular Value Thresholding (SVT) [2], Fixed Point
Continuation (FPC) [12], and Inexact Augmented Lagrange
Multiplier (IALM) [11].

To apply the low-rank matrix completion for real appli-
cations, it is necessary to consider noisy observations as
M = M0 + Z, where M0 is an unknown ground-truth low-
rank matrix and Z is a zero-mean Gaussian noise matrix that
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the standard deviation is σ. Candes and Plan [3] proposed a
method to solve this challenging problem by the following
optimization problem

minimize ||X||∗, s.t. ||PΩ(X)− PΩ(M)||F ≤ δ, (2)

where δ > 0 is a thresholding parameter assuming
||PΩ(Z)||F ≤ δ, and then δ can be estimated with high
probability from δ2 ≤ (|Ω| +

√
8|Ω|)σ2. The authors [3]

proposed to use the Lagrangian version

minimize µ||X||∗ +
1

2
||PΩ(X)− PΩ(M)||2F , (3)

with appropriate value of parameter µ by using FPC algorithm
[12]. In this method, they tune the value of µ solving (3) so
that ||PΩ(X∗(µ)) − PΩ(M)||F = δ, where X∗ denotes the
optimization result of (3).

The key point of noisy matrix completion is to estimate ex-
act rank of matrix M0 from noisy entries Mij (i, j) ∈ Ω. One
possible solution is the minimization of nuclear norm, however
we observed that nuclear norm minimization estimated always
larger rank than the true rank for noisy data. This is because
the nuclear norm minimization shifts to regularization in noisy
case which may decrease the flexibility of model, and then
the larger rank matrix X is required for best fitting. Thus,
in nuclear norm minimization, we expect that if estimated
matrix rank X is correct, then estimation error is not exactly
minimized, and vice versa. Keshavan et. al [9], [8] proposed a
criterion without using nuclear norm to estimate matrix rank
by

R̂ = argmin
i

σi+1(PΩ(M)) + σ1(PΩ(M))
√
i/E

i
, (4)

where E = |Ω|/
√
IJ , and implemented an algorithm for ma-

trix completion which is known as OptSpace. Since instability
of the criterion (4), the algorithm sometimes fails to estimate
a true matrix rank (e.g., too low/high), they also proposed
an alternative algorithm of the Incremental OptSpace [9],
[8] for ill-conditioned cases. Incremental OptSpace gradually
increases R one by one from rank-1 matrix until getting
an appropriate fitting, and it works quite well to estimate
matrix rank precisely even in ill-conditioned cases, however,
high computational complexity of the algorithm, especially
for large-scale problems is the main obstacle for its practical
applications.
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In this paper, we reveal a disadvantage of nuclear norm
minimization and propose a new greedy algorithm for precise
matrix rank estimation for noisy low-rank matrix completion
by searching optimal rank. The concept of the proposed algo-
rithm, named the greedy low-rank matrix completion (GLMC),
is closely related to the Incremental OptSpace, however our
algorithm is much simpler and faster, and it works more
efficiently even for relatively large matrices.

The rest of this paper is organized as follows. In Section II,
we propose a new GLMC method, and its accelerated version.
In Section III, we demonstrate experiments for comparison.
Discussions are provided in Section IV. Finally, concluding
remarks are described in Section V.

II. PROPOSED METHOD

In our method, we minimize number of components R of
linear matrix factorization model UΣV T instead of matrix
rank:

minimize
R

R, s.t. ||PΩ(UΣV T )− PΩ(M)||F ≤ δ, (5)

where Σ ∈ RR×R is a diagonal matrix consisting of [λ1,
λ2, ..., λR], U = [u1,u2, ...,uR] ∈ RI×R and V =
[v1,v2, ...,vR] ∈ RJ×R are left and right orthogonal factor
matrices, respectively. Actually, R and matrix rank of UΣV T

are equivalent by assuming λr > 0, ∀r ∈ {1, 2, ..., R} and
UTU = V TV = I ∈ RR×R, where I is an identity matrix.
Let E(R) = minU ,Σ,V ||PΩ(UΣV T ) − PΩ(M)||F and R∗

be optimal rank with δ, we have

E(1) ≥ E(2) ≥ · · · ≥ E(R∗ − 1) ≥ δ ≥ E(R∗). (6)

Thus it is not difficult to obtain enough small R∗ by gradually
increasing R ← R + 1 while we solve the following sub-
optimization problem:

[U∗,Σ∗,V ∗] = argmin
U ,Σ,V

||PΩ(UΣV T )− PΩ(M)||F . (7)

This sub-optimization problem is a special case of the mani-
fold optimization step in OptSpace [8] which solves (7) by
using a gradient based optimization scheme. In our paper,
we propose a new simpler algorithm to solve (7), named
as the Greedy Fixed-rank Matrix Completion (GFMC), in
Section II-A. By using GFMC we propose a simple and fast
algorithm to solve (5) in Algorithm 1. We call the proposed
algorithm as Greedy Low-rank Matrix Completion (GLMC).

Algorithm 1 Greedy Low-rank Matrix Completion (GLMC)
algorithm

1: Input: M , Ω, δ, and ε (tolerance for GFMC)
2: Initialize: R← 0;
3: repeat
4: R← R+ 1;
5: X ← GFMC(M ,Ω, R, ε);
6: until ||PΩ(X)− PΩ(M)||F ≤ δ
7: Output: X

Algorithm 2 Sub-optimization: Greedy Fixed-rank Matrix
Completion (GFMC)

1: Input: M ∈ RI×J , Ω, R, ε (tolerance)
2: Initialize: generate U ∈ RI×R, Σ ∈ RR×R, V ∈ RJ×R,

randomly.

3: Yij ←
{

Mij (i, j) ∈ Ω
(UΣV T )ij otherwise

;

4: repeat
5: E1 ← ||UΣV T − Y ||F ;
6: [U ,Σ,V ]← tSVD(Y , R);
7: Yij ← (UΣV T )ij for (i, j) 6∈ Ω;
8: E2 ← ||UΣV T − Y ||F ;
9: until |E1 − E2| ≤ ε

10: Output: X = UΣV T

Algorithm 3 Accelerated GLMC algorithm
1: Input: M , Ω, δ, ν (typically 0.01), and ε
2: Initialize: R← 1, and generate U ∈ RI×R, Σ ∈ RR×R,

V ∈ RJ×R, randomly.

3: Yij ←
{

Mij (i, j) ∈ Ω
(UΣV T )ij otherwise

;

4: repeat
5: E1 ← ||UΣV T − Y ||F ;
6: [U ,Σ,V ]← tSVD(Y , R);
7: Yij ← (UΣV T )ij for (i, j) 6∈ Ω;
8: E2 ← ||UΣV T − Y ||F ;
9: if E2 > δ and |E1−E2|

|E2−δ| < ν then R← R+ 1;
10: until E2 ≤ δ and |E1 − E2| < ε
11: Output: X = UΣV T

A. Sub-optimization problem

In this section, we explain the GFMC algorithm. Problem
(7) can be transformed to:

minimize ||UΣV T − Y ||2F ,

s.t. Yij =

{
Mij (i, j) ∈ Ω
(UΣV T )ij otherwise

. (8)

It can be solved by the iterations of the following up-
date rules until converge: [Uk,Σk,V k] are obtained as
the largest R singular values and singular vectors of ma-
trix Y k by the truncated SVD (tSVD) [1], and Y k+1

ij ←
(UkΣk(V k)T )ij (i, j) 6∈ Ω. The GFMC is summarized in
Algorithm 2.

B. Accelerated algorithm

If current value of R is too small to fit the matrix factor-
ization model sufficiently well to the given incomplete matrix
during the iteration process in Algorithm 2, then we can stop
the algorithm for current R and increase R← R+ 1, and run
the algorithm again for a new increased R. In this procedure,
we switch in early stage of iterations to increased R if the
following condition is met:

|E1 − E2|
|E2 − δ|

< ν, (9)
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where ν > 0 is a stopping threshold (typically, ν = 0.01).
Note that the condition (9) means that when the convergence
speed becomes relatively slow, we stop the iteration procedure
for current R. By incorporating this simple stopping/switching
criterion, we finally developed an accelerated algorithm which
is summarized in Algorithm 3. When we set ν sufficiently
small, Algorithm 3 provides the same result as Algorithm 1,
however, computational time is not reduced well for too
small ν. Conversely, for relatively larger ν, the algorithm is
acceralated very well, however accuracy of the rank estimation
is reduced.

III. EXPERIMENTS

A. Nuclear-norm minimization vs rank minimization for syn-
thetic noisy matrix completion

Next, we investigated the estimation accuracy of matrix rank
and missing values for various value of δ. In both methods of
FPC [3], [12] and the GLMC, δ is a common key parameter to
constrain the errors between noisy observations and estimated
values. Obviously, small error δ requires a highly flexible
model, then estimated matrix rank becomes relatively large,
and vice versa.

In this experiment, we generated R-rank matrix M ∈
RN×N by multiplication of A ∈ RN×R and B ∈ RR×N
plus noisy matrix Z ∈ RN×N , where Air ∼ N(0, 1),
Brj ∼ N(0, 1), and Zij ∼ N(0, σ2). Parameters were set
as N = 100, R = 5, σ = 0.2. We randomly removed 50%
entries from M , and applied FPC and GLMC algorithms with
various values of δ. Figure 1 shows the result of estimated
matrix rank and root mean squared error (RMSE) between the
estimator and true low-rank matrix AB. The minimum errors
were 1.47e-1 by FPC with δ = 10.8 and 9.55e-2 by GLMC
with δ ∈ [14.4, 50.5]. Correct rank was estimated by FPC
with δ ∈ [21.6, 108.2], and by GLMC with δ ∈ [14.4, 50.5].
The problem with the FPC is that the δ which guarantee
the minimum error is not overlapped with the range of δ
performing the correct matrix rank. On the other hand, the
best range of δ for GLMC is very consistent for both the
RMSE and rank estimation.

Next, we investigate the performance for various settings of
true ranks R, missing rates, and noise levels σ. We applied the
IALM, FPC-δ, FPC-µ, and the GLMC. Threshold δ for FPC-
δ and GLMC was set based on the noise level parameter σ

and number of observations by δ =
√

(|Ω|+
√

8|Ω|)σ2, µ for
FPC-µ was set by µ = (

√
I +
√
J)
√
|Ω|/(IJ)σ, where both

optimal values of δ and µ were taken from [3]. Figure 2 shows
the result of average ± standard deviation of estimated matrix
rank and RMSE for various problem settings: matrix ranks,
missing rates, and noise levels. We can see the significant
improvements of rank estimation and RMSE performances by
using GLMC algorithm in comparison with the nuclear-norm
based completion scheme. Rank estimation by GLMC was
almost always correct, and RMSE were reduced 30-40% in
comparison to the FPC algorithm. These results indicate the
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Fig. 1. Estimated rank and root mean squared error for various values of δ.
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Fig. 2. Performance of IALM [11], FPC [3], [12], and GLMC (proposed)
algorithms for various settings.

disadvantage of nuclear-norm minimization (regularization)
for noisy data.

B. Computational time comparison with OptSpace

As mentioned previously, the proposed method is closely re-
lated to a special case of OptSpace and Incremental OptSpace.
Since our optimization problem is equivalent to a special case
of the OptSpace, we compared only computational times. In
our experiments, we generated R-rank matrix M ∈ RN×N
in the same way to Section III-A. We randomly removed
50% entries from M , set σ = 0.2, and applied GFMC,
Accelerated GLMC, OptSpace [8] and Incremental OptSpace
[9] algorithms. We used implementations of OptSpace in
C and MATLAB which are distributed in online, and ap-
plied our stopping criteria into OptSpace for comparison.
Table I shows the computational times of these algorithms
in C and MATLAB implementations. Our accelerated GLMC
implemented only in MATLAB was generally faster than
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TABLE I
COMPARISON OF COMPUTATIONAL TIMES FOR GFMC, ACCELERATED
GLMC (AGLMC), AND OPTSPACE (OS), INCREMENTAL OPTSPACE

(IOS) ALGORITHMS: -c AND -m DENOTE IMPLEMENTING LANGUAGES OF
C AND MATLAB.

[sec] Completion with True Rank Completion with Rank Estimation
N R GFMC-m OS-c OS-m AGLMC-m IOS-c IOS-m

200 5 0.73 0.26 0.47 0.67 1.06 2.41
200 10 0.66 0.58 1.56 1.47 5.76 17.47
200 20 1.85 1.96 16.26 4.04 33.14 151.53
400 5 0.99 0.75 1.43 1.87 2.84 8.68
400 10 1.60 2.10 4.52 3.97 11.20 45.30
400 20 2.81 2.68 31.04 9.09 41.69 492.64

1000 5 5.05 3.27 — 10.42 11.79 —
1000 10 7.57 6.40 — 22.37 41.90 —
1000 20 12.36 15.35 — 49.62 161.60 —
1000 50 35.10 48.62 — 171.85 808.73 —
1000 100 116.60 197.71 — 515.36 4239.42 —

Incremental OptSpace for both implementations.

IV. DISCUSSION

A. Advantage of the proposed algorithm

In this paper, we discussed the methods of automatic
rank determination for noisy low-rank incomplete matrix, and
revealed some problems of nuclear-norm based methods and
Incremental OptSpace. For noisy data, nuclear-norm based
method tunes a trade-off parameter µ by solving FPC algo-
rithm iteratively, and Incremental OptSpace tunes R by solving
OptSpace with fixed rank R iteratively. Both algorithms are
essentially similar from this aspect. The problem with FPC
and OptSpace algorithms is that they use highly redundant
procedures many times, so their computational costs are high.
On the other hand, the proposed AGLMC algorithm can reduce
such redundant procedures to stop the algorithm with current
R and go to next step in early stage which is an essential
advantage of the AGLMC algorithm.

In comparison with the computational complexity of the al-
gorithms, nuclear-norm based methods compute full-rank SVD
in each iteration, on the other hand GFMC algorithm computes
tSVD with R in each iteration. Computational complexity
of tSVD is O(N2R) for R ≤

√
N according to [1]. Thus,

GFMC is generally faster than FPC. In contrast, computational
complexity of OptSpace is O(|Ω|R logN) according to [8]. In
our experiment, computational times of GFMC in MATLAB
and OptSpace in C were not so different.

B. Extension methods for promising practical applications

Rank estimation or model selection is a very important for
practical applications such as blind source separation [7], [6]
when the number of latent sources is unknown. Our greedy
rank estimation scheme is very useful for such a objective,
however our model may not be always appropriate for practical
applications because of the orthogonal constraints for U and
V , and then often the extension methods for sparse, smooth,
or nonnegative factor matrices are necessary. Thus it is a very
interesting extension to replace the GFMC by penalized matrix
decomposition (PMD)[14], nonnegative matrix factorization
(NMF) [6], or other constrained matrix factorization methods.

To apply tensor data, matrix decomposition model can be
extended to tensor decomposition model. For example the
our AGLMC can be easily applied to PARAFAC decom-
position model [5]. The estimation of the optimal number
of components for many existing algorithms of PARAFAC
decomposition or its constrained versions [6], [15] by using
our greedy rank estimation scheme is applicable for many
practical applications.

V. CONCLUSIONS

In this paper, we proposed a new method for matrix-rank
estimation from noisy observations via greedy low-rank matrix
completion. The proposed method minimizes the matrix rank
directly without using nuclear-norm minimization. Our greedy
low-rank matrix completion algorithm was able to estimate
exact matrix rank, and performed faster matrix completions
than Incremental OptSpace in experiments. Its extension to
the constrained matrix/tensor completions are promising for
real applications.
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