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Abstract—Our target is development of a view synthesis system
that includes the entire process from capturing of multi-view
videos to synthesize virtual view in real-time. Depth estimation
of the target scene is indispensable for view synthesis from multi-
view videos. In this paper, we improved the depth estimation
method we had developed in a previous work, where an active
illumination technique was combined with an efficient layer based
algorithm. More specifically, we proposed an adaptive space-time
filtering for the cost volumes constructed for depth estimation.
The adaptive space-time filtering adapts its shape for each pixel
automatically according for depth estimation, resulting in higher
quality of the depth estimation especially in dynamic scenes.
Our method was tested on a system consisting of 16 video
cameras and a Digital Light Processing (DLP) projector to show
its effectiveness. We achieved higher quality depth estimation,
resulting in higher quality virtual view synthesis with a nearly
real-time frame rate.

I. INTRODUCTION

Virtual view synthesis from multi-view videos has been
an attractive research area during recent years. We aim at
development of a view synthesis system that can accomplish
the entire process from image capturing to view synthesis in
real-time and generate high quality virtual views. Our target
applications include 3-D live broadcasting and 3-D telecon-
ferencing systems where real-time processing from input to
output is an essential requirement.

View synthesis from multi-view images requires depth
estimation of the target scene. Not only accuracy but also
speed and efficiency are required for the depth estimation
if dynamic scenes should be processed in real time. As a
promising approach, view-dependent depth estimation, where
depth values are estimated directly for a virtual view to
synthesize, has been introduced into view synthesis systems
[1–8]. This approach estimates only the necessary information
for the virtual view to synthesize, leading to high efficiency.
Since the obtained depth map is unique to each viewpoint,
depth estimation is repeated for each viewpoint. We adopted
a view-dependent approach with depth layers [2], [7], [8]
because it is suitable for our aim.

As for the accuracy of depth estimation, much has re-
mained to be improved. When we use a passive method
(using only cameras), the estimated depth values are prone
to be unstable especially in the regions including texture-less
objects, resulting in low quality virtual views. Meanwhile,
active illumination can help depth estimation because with

projected random patterns texture-less regions are made to be
texture rich, resulting in improved depth estimation. Moreover,
by using time varying illuminating patterns, the scene is
characterized also along time. It has been proven that using
several temporal frames simultaneously for stereo matching
(space-time filtering on cost volumes) leads to more stable
depth estimation [9], [10].

Mori et al. [8] adopted active illumination and space-time
matching for real-time view synthesis. However, their space-
time matching was limited to two sequential time frames,
which resulted in limited depth accuracy. In this paper, we
extend their idea to more than two temporal frames in order
to further improve the accuracy of depth estimation. Moreover,
we propose an adaptive space-time filtering where the filter’s
shape is adapted for each pixel automatically according to
the motion of the pixel. We implemented our method on a
view synthesis system consisting of 16 cameras and a DLP
projector, where the entire processing from image capturing
to view synthesis can be performed in real time.

II. PROPOSED METHOD

A. Overview

We assume that the system consists of multiple video
cameras and a DLP projector. The cameras are arranged on a
2-D grid that roughly lie on a plane, and all the cameras are
calibrated and synchronized. The projector does not need to
be calibrated against the cameras because it is used only for
attaching pattens to the scene objects. The projection range
should almost overlap the field of views of the cameras.

The projector casts spatially randomized 2-D binary patterns
generated by M-sequence random numbers, and the patterns
vary over time. These patterns are helpful for stabilizing the
depth estimation but should be eliminated from the synthesized
view. Therefore, we insert a blank pattern with a uniform
luminance alternatively along time as shown in Fig. 1. We
use only the videos with random patterns for depth estimation
but only the videos with the blank pattern for view synthesis.
Therefore, we treat two sequential random and blank patterns
as a unit with the same time. This makes view synthesis
intervals twice, but we have to accept it as long as we use
active illumination with visible light.
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Fig. 1. Videos with active illumination. A and B are different random patterns and O is the blank pattern.

B. Depth estimation and view synthesis

The configuration is illustrated in Fig. 2, where we want to
synthesize the virtual view from the input views. We need to
obtain light rays that reach the virtual viewpoint. One of such
light rays, referred to as a target light ray, is denoted as r(x, t),
where x represents the position of the light ray in the virtual
view and t is time. To obtain r(x, t), we divide the scene into
several depth layers whose depths are represented as z ∈ Z ,
and estimate the originating depth of r(x, t). To estimate the
originating depth, we refer to the three input cameras close
to the intersection of r(x, t) and camera array plane, which
are represented as a set of cameras V (x). The intersection
between the target light ray r(x, t) and a depth layer with
z is represented as p(x, z, t). For each z, we evaluate the
color consistency between the reference light rays ri(x, z, t),
which correspond to the back-projection of p(x, z, t) to the
i-th input camera with i ∈ V (x). Each RGB component of
ri(x, z, t) takes a floating-point value between 0 and 1. The
color-consistency cost is given by

C(x, z, t) = consistency(ri(x, z, t)|i∈V (x)) (1)

We use the sum of variances for each RGB component as the
consistency measure. At the same time, we obtain the color
of the target light ray r(x, t) by blending the reference light
rays with z.

I(x, z, t) =
∑

i∈V (x)

wi(x)ri(x, z, t) (2)

where wi(x) denotes the weight for the reference light ray
ri(x, z, t), which takes a floating-point value between 0 and
1 depending on the position of the reference cameras and the
target light ray. With a given time t, C(x, z, t) and I(x, z, t)
are obtained for all x and z. Then, we refer to C(x, z, t) and
I(x, z, t) as cost volume and color volume, respectively. More
precisely, the reference light rays to calculate C(x, z, t) are
taken from the videos with random patterns, while I(x, z, t)
is taken from the videos with the blank pattern.

Generally, the consistency cost in Eq. (1) is insufficient
for stable depth estimation because it only contains one point

Fig. 2. Configuration for rendering a virtual view

consistency at one time. Therefore, this cost should be spatially
and temporally filtered in each depth layer as

C̃(x, z, t) =
∑

t′∈T (t)

∑
x′∈S(x)

Tx,z,t(t−t′)Sx,z,t(x−x′)C(x′, z, t′)

(3)
where T (t) = {t′|t − t′ ≥ 0} denotes the set of times in the
past of t. S(x) = {x′| |x − x′| ≤ W} represents a set of
points within a square window centered at x. Tx,z,t(t′) and
Sx,z,t(x′) denote temporal and spatial filter kernels respec-
tively, which can take different shapes for different x, z, and
t. The design of these filters will be addressed in section II-C.

Finally, the depth value that minimizes the cost function is
selected for each target light ray r(x, t) as

zopt(x, t) = arg min
z∈Z

C̃(x, z, t) (4)

Given its originating depth zopt(x, t), the color of the target
light ray r(x, t) is selected as

r(x, t) = I(x, zopt(x, t), t) (5)

By gathering r(x, t) for all x, the virtual view at time t is
finally synthesized.
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Fig. 3. Our camera array and projector system

C. Space-time filtering

The optimal shapes for spatial and temporal filters depend
on the motion and texture around each pixel. For example, a
larger spatial window is preferred for weakly textured regions,
but it causes errors (boundary fatting effect) around the large
depth gaps. Meanwhile, keeping the spatial window size small
and extending temporal window size will be a remedy for
the above errors. However, this remedy is effective only for
regions without motions. In this work, we employ a simple
filter adaptation method based on the temporal variation on the
color volume I(x, z, t), which can be efficiently implemented
on GPU.

The color volume includes motion information. We estimate
the static-ness of (x, z) from the two sequential temporal
frames with the blank pattern.

α(x, z, t) =
1√
2πσ

exp
(
−k |I(x, z, t) − I(x, z, t − 1)|2

2σ2

)
(6)

where k and δ are positive constants. A smaller α(x, z, t)
indicates that (x, z) is more likely to belong to a dynamic
region. According to the value of α(x, z, t), the spatial filter
kernel is determined as

Sx,z,t(x′) = 1 − α(x, z, t)|x′|
W

(7)

Using this filter kernel, we first apply spatial filtering to the
color-consistency cost as

C ′(x, z, t) =
∑

x′∈S(x)

Sx,z,t(x − x′)C(x′, z, t) (8)

Then, we perform temporal filtering by

C̃(x, z, t) = (1−α(x, z, t))C ′(x, z, t)+α(x, z, t)C̃(x, z, t−1)
(9)

Note that Eq. (8) is implemented as a FIR filter (kernel
convolution), while Eq. (9) is implemented as an IIR filter
(recursive update). However, combination of Eqs. (8) and
(9) is equivalent to Eq. (3). Note that we can virtually use
many temporal frames while Mori’s method [8] used only two
temporal frames. Nevertheless, our implementation as an IIR

TABLE I
COMPARED METHODS

active illumination space-time filtering
(i) - spatial only
(ii) X spatial only
(iii) X space-time (α(x, z, t) = 0.5)
(iv) X space-time (α(x, z, t) = 0.9)
(v) X space-time (adaptive)

filter keeps our method from being too much computationally
expensive and memory hungry.

For an element (x, z, t) in a static region, the weights for
spatial neighbors tend to be small but the weights for temporal
neighbors tend to be large. It will reduce boundary fatting
effect around the large depth gaps, while keeping the stability
with larger temporal weights. In contrast, for an element in
a dynamic region, the weights are large for spatial neighbors
and small for temporal neighbors. It will prevent using the
past information in moving regions, while keeping the stability
with larger spatial weights. This adaptation is performed per
element (x, z, t) because we use α(x, z, t) to control the
space-time filter.

III. EXPERIMENT

Our system consists of 16 video cameras (Point Grey
Research Flea3), a DLP projector (NEC L50W), and a work-
station (HP Z820). Each camera captures RGB color images
in 640 × 480 pixels at 60 fps. The workstation has Intel 2.40
GHz dual processors, 16 GB main memory, and an NVIDIA
GeForce GTX 660 graphics card with 2.0 GB video memory.

The appearance of the system is shown in Fig. 3. We
arranged the cameras in a 4 × 4 array, whose intervals were
about 50 mm both in horizontal and vertical directions. All
cameras and a DLP projector were synchronized by sharing
vertical synchronous signal. The cameras were calibrated
with OpenCV and rectified with the method in [11]. Color
calibration was not performed, but we set the same exposure
and gain values for all cameras. As the target scene, we located
several objects including a person in front of the system. We
placed 30 depth layers to cover the distance 1100–4000 mm
from the camera array.

We compared five methods shown in Table 1, which can be
categorized in terms of (A) active illumination and (B) space-
time filtering. The size of spatial filtering window was set to
21 × 21 for all methods. The weights were constant over the
window for methods (i) and (ii), while they varied according
to Eq. (7) for methods (iii)–(v). Method (i) is the baseline
reference, where no active illumination was employed. In this
case, we used only the videos with the blank pattern both
for the depth estimation and view synthesis. Method (ii) used
active illumination without temporal filtering. Methods (iii)
and (iv) are with active illumination and space-time filtering
with a fixed filter shape for all pixels; the value of α(x, z, t)
was fixed to 0.5 and 0.9, respectively, regardless of the motion
of each pixel. Method (v) is our proposal, where we used
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(a) method (i) (b) method (ii) (c) method (iii)

(d) method (iv) (e) method (v) (proposed method)

Fig. 4. Comparison (top: depth maps, bottom: virtual views)
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Fig. 5. Depth maps and virtual views for different viewpoints with the proposed method.

active illumination and adaptive space-time filtering. We set
k = 10 and σ = 0.44 in Eq. (3). Figure 4 shows the
estimated depth maps and generated virtual views by the
five methods, which were generated from the same stored
images. It can be observed from the results of methods (i)
and (ii) that depth estimation was marginally improved with
active illumination, but was not of satisfactory quality without
temporal filtering. As shown in the results of methods (iii)–(v),
space-time filtering greatly improved depth estimation quality,
especially with adaptive filtering in method (v). The values
of α(x, zopt(x, t), t) are also visualized in Fig. 4(e), where a
darker value indicates a larger motion. The value of α(x, z, t)
was about 0.9 at static pixels. Figure 5 shows depth maps and
virtual views generated by the proposed method for different
viewpoints. Both of the target scene and the viewpoint are
moving. Please refer to the supplementary video for more
detail.

We measured the processing time of the entire process
including video capturing from the cameras. New views were
synthesized in every 130 msec (7.6 fps) with our current
GPGPU implementation. Our adaptive space-time filtering
method was performed on live video inputs in a nearly real-
time frame rate.

IV. CONCLUSION

In this paper, we proposed an adaptive space-time filtering
for virtual view synthesis that can improve the quality of
depth maps, and consequently, the virtual views generated
from them. Our method determines the shape of space-time
filtering for each pixel according to the motion. Our method
was tested on a system consisting of 16 video cameras and
a DLP projector to show its effectiveness. We achieved high
quality virtual view synthesis with a nearly real-time frame
rate. In the future work, we will explore better space-time filter
shapes that can achieve more stable depth estimation and is
suitable for real-time implementation as well.
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