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Abstract—A near-duplicate video clustering algorithm based
on multiple complementary video signatures is proposed in this
work. We use three kinds of frame descriptors: RGB histogram,
color name histogram, and ternary pattern. Then, we convert
each kind of frame descriptors for a video into a video signature
based on the bag-of-visual-words scheme. Consequently, we have
three signatures to represent the video. These signatures are
complementary to one another, since they are robust to different
near-duplication types. Also, we develop a clustering technique
to refine pairwise matching results and categorize near-duplicate
videos. Experimental results on an extensive video dataset show
that the proposed algorithm detects near-duplicate videos more
effectively than conventional algorithms.

I. INTRODUCTION

With the growth of online video sharing and searching
services, users conveniently search, download, and even re-
upload videos after editing. Due to the vigorous video sharing,
there are a huge number of near-duplicate videos (NDVs) in
the Internet. Redundant videos occupy up to 93% of search
results to user queries [1]. These NDVs take users a longer
time than necessary to find desired videos. Also, redundant
storage is required for near-duplicate or identical videos. It
is hence essential to eliminate or at least categorize NDVs.
However, it is hard to detect NDVs because of various types
of video modification, including logo and subtitle insertion,
resizing, cropping, and photometric change. A lot of attempts
have been made to detect NDVs in the last decade [2]–[13].

An NDV detector performs three steps in general: frame
descriptor extraction, video signature generation, and near-
duplicate detection. First, given a query video, features for
each frame are extracted to yield a frame descriptor. Second,
the frame descriptors for all or key frames are converted
into a video signature. An approach to this conversion is
the indexing, which converts frame descriptors into votes,
corresponding to indices of a video signature vector. For
example, Jégou et al. [2] and Hu [3] employ the bag-of-visual-
words scheme and the local sensitive hashing, respectively,
for the indexing. Another approach is to concatenate frame
descriptors to yield a video signature [4], [5]. Third, NDVs are
retrieved by comparing the signature of the query video with
those of database videos. Note that the clustering of NDVs
in a database can improve the efficiency of the NDV retrieval
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and the database management. Some NDV detectors [6], [7]
categorize NDVs in an ad-hoc fashion, but little work has been
done to develop efficient clustering techniques for NDVs.

Let us categorize conventional NDV detectors into three
groups according to their frame descriptor types: global, local,
and hybrid of global and local. Global descriptors, which
extract summarized features of an entire frame, are more
robust to logo and subtitle insertion than local descriptors are.
Global descriptors also require less computations, but are less
discriminative since they do not consider spatial information.
To obtain global features, invariant to photometric variations,
Grana et al. [8] extract a color histogram in the HSV color
space. In addition to color histograms, Zheng et al. [9]
adopt spatial derivative filters to extract gradient features, and
Shafeian and Bhanu [10] employ the mean and variance of a
color distribution. Shang et al. [11] describe each frame with a
binary pattern, and combine the patterns of successive frames
to obtain the visual shingle of them.

Local descriptors extract features around interest points. A
typical interest point detector finds points that are tolerant of
geometric and photometric transform [14]. Then, around each
interest point, local features are extracted and then combined
into a frame-level descriptor. Yang et al. [15] divide a local
window around each interest point into 3 × 3 patches, and
compute the difference between the average gray-levels of
each pair of patches. They employ the local sensitive hashing
to aggregate the difference patterns. Wei et al. [16] extract the
SIFT feature [17] for each interest point and exploit the bag-of-
visual-word scheme to combine those features. To reduce the
computational complexity of SIFT, Liu et al. [18] employ the
ranks of gradient magnitudes within a local window. However,
inserted logos or subtitles generate numerous interest points
around them. These irrelevant interest points disrupt local
descriptors easily.

To overcome the disadvantages of the global and the local
descriptors, some NDV detectors use a hybrid of global and
local frame features. Wu et al. [12] first select NDV candidates
using a global color histogram with a high recall rate, and
filter out only distinctly different videos. Then, they identify
the remaining videos using local descriptors. Song et al. [13]
extract a global color histogram and local binary patterns, and
then concatenate them. They also apply a hashing technique
to detect NDVs efficiently. However, the blending of different
features may weaken the specific strength of each individual
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Fig. 1. An overview of the proposed video signature extraction process.
Multiple frame features are extracted and combined into the corresponding
video signatures. Each video signature is a bag-of-visual-words (BoVW)
descriptor.

feature, degrading the NDV detection performance.
In this work, we propose a novel hybrid NDV detector using

multiple complementary frame descriptors. Specifically, we
use a global RGB histogram, a local color name histogram, and
a global ternary pattern to describe a frame. To preserve the
specific strength of each descriptor, we process the descriptors
in a multi-modal manner. We convert the three kinds of
frame descriptors into the corresponding video signatures
using the bag-of-visual-words scheme separately. The resultant
three signatures work collaboratively, since they are robust to
different near-duplication types. Moreover, we cluster NDVs
in a video database and refine pairwise matching results to
discover undetected NDVs and eliminate false matches. Exper-
imental results demonstrate that the proposed NDV detector
significantly outperforms the conventional detectors in [11],
[13].

The rest of the paper is organized as follows. Section 2
describes the proposed multiple complementary signatures,
and Section 3 develops the NDV clustering algorithm. Section
4 discusses experimental results. Finally, Section 5 concludes
this work.

II. COMPLEMENTARY VIDEO SIGNATURES

Video signature extraction is important for robust NDV
detection. However, it is hard to represent the characteristics of
a video with a single signature, since there are various near-
duplication types. To describe videos effectively, we extract
multiple kinds of signatures, which are complementary to one
another.

We first extract frame descriptors and then combine them
into video signatures using the bag-of-visual-words scheme.
Our main contributions are (1) the extraction of frame de-
scriptors in different scales and different color spaces, which
are discriminative as well as robust to various near-duplication
types, and (2) the multi-modal process that makes the signa-
tures complement one another. Fig. 1 illustrates the extraction
of video signatures.

A. Frame Descriptors

We use three frame descriptors, which are RGB histogram,
color name histogram, and ternary pattern. Since each de-
scriptor is robust to different near-duplication types, they
work collaboratively for reliable NDV detection. To reduce

(a) (b) (c)
Fig. 2. Color naming: (a) input images, (b) uniformly quantized hue images,
and (c) quantized images by the proposed color naming scheme. Whereas
achromatic and dark regions in (a) are converted into colors that are uncorre-
lated to the human perception in (b), perceptually better quantization results
are obtained by the proposed scheme in (c).

the complexity, we uniformly sample frames at the rate of 2
frames/second. We extract the three kinds of frame descriptors
for the sampled frames I1, . . . , IN .

RGB histogram: We extract RGB color histograms, de-
noted by fRGB

1 , . . . , fRGB
N , which describe the whole frames

globally. We quantize each color channel into 16 levels and
construct a histogram. Then, we cascade the histograms for the
three channels into a single 48-dimensional histogram. This
global RGB histogram is robust to cropping and trimming,
but sensitive to photometric modifications.

Color name histogram: It is necessary to develop a
descriptor that is invariant to photometric modifications, such
as color variations, white balance variations, and tone map-
ping. When colors are adjusted by such modifications, they
vary extremely in the RGB color space. While the human
visual system recognizes original and varied colors as the
same one, their RGB coordinates are significantly different.
Thus, it is hard to produce a photometrically invariant frame
descriptor in the RGB space. In contrast to the RGB space,
hue in the HSV space separates the chromatic components of
colors. Thus, the hue-based color quantization, called color
naming, is relatively robust to photometric discrepancies [19].
However, the conventional color naming is unreliable in the
cases of low brightness or low saturation conditions. Fig. 2(b)
exemplifies the problem of the hue-based color naming. To
overcome this issue, we develop a hierarchical color naming
scheme. We first partition the HSV space into a chromatic
subspace and an achromatic subspace. Then, we quantize each
subspace into representative colors, as illustrated in Fig. 2(c).
The proposed scheme provides more correlated results to the
human perception than the conventional uniform quantization.

When a color has a saturation value lower than a threshold,
its chromaticity is hard to perceive. Also, the threshold varies
with brightness conditions. Thus, we divide the HSV color
space into a chromatic subspace and an achromatic subspace
by employing a brightness-based saturation threshold. Specif-
ically, for each brightness V , we empirically determine the
saturation threshold τ(V ) by

τ(V ) = Smax −
n∑

i=1

αiu(V − Vi) (1)
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where u(·) is the unit step function, Vi and αi are the locations
and heights of steps, respectively. In this work, the number n
of steps equals 3, and the values of αi and Vi are (90, 8, 2)
and (20, 55, 85), respectively. Also, Smax is the maximum
saturation, i.e. Smax = 100. Note that 0 ≤ S ≤ 100. When
a color has a saturation value S < τ(V ), it is declared to
belong to the achromatic subspace. Otherwise, it belongs to the
chromatic subspace. Notice that we employ the step functions
to model abrupt changes in the color perception of the human
visual system according to the brightness conditions.

Next, we determine representative colors for each subspace.
For the achromatic space, we quantize a color into one of
three levels, black, gray, or white, when its brightness satisfies
V < V1, V1 ≤ V < V2, or V ≥ V2, respectively. On the
other hand, colors in the chromatic subspace are mapped to six
levels, red, yellow, green, cyan, blue, and violet, by quantizing
their hue values uniformly.

Based on the color naming scheme, we describe the
input frames I1, . . . , IN by their color name histograms
fCN
1 , . . . , fCN

N . To preserve spatial information partially, we
partition a frame into 3 × 3 patches and then extract the 9-
dimensional color name histogram for each patch, as shown in
Fig. 1. By cascading the patch-level histograms, we generate
the 81-dimensional frame descriptor.

Ternary pattern: We also exploit ordinal relations of
patches to describe a frame, which are robust against photo-
metric editing [11]. We first divide a frame into 4×4 patches,
as shown in Fig. 1, and compute the average luminance of
each patch. Then, for a pair of patches (i, j), we describe the
ordinal relation in a ternary digit by

Tij =

 0 if Li − Lj > η,
1 if |Li − Lj | ≤ η,
2 if Lj − Li > η,

(2)

where Li and Lj are the luminance levels of patches i and
j, respectively, and η is a threshold that is fixed to 20. We
examine all possible pairs of patches. Consequently, we obtain
the 120-dimensional frame descriptors fTPN

1 , . . . , fTPN
N , where

120 =
(
16
2

)
.

B. Video Signatures

For video signature generation, we should integrate the three
kinds of frame descriptors. There are two possible approaches:
early fusion and late fusion. In the early fusion, for each frame,
the three descriptors are first combined into a single unified
frame descriptor. Then, a video signature is generated using the
unified descriptors of the frames. The early fusion, however,
may weaken the discriminative capability of each individual
descriptor. On the other hand, in the late fusion, for each kind
of frame descriptors, we generate a separate video signature
without the descriptor unification. In this work, we adopt this
multi-modal approach of the late fusion to preserve the merits
of different frame descriptors.

We adopt the bag-of-visual-words scheme [20]–[22] to con-
vert the three kinds of frame descriptors into the corresponding
video signatures. In this work, visual words correspond to

quantized frame descriptors, and a visual signature is generated
by constructing the histogram of the visual words. To learn
the visual words, we extract frame descriptors from a training
set, which is composed of 78,400 frames and is not used as
test videos. Then, the frame descriptors are partitioned into K
clusters, whose centroids become the visual words. We employ
the K-means clustering technique, and set K to 500, 900, and
500 for the RGB histograms, the color name histograms, and
the ternary patterns, respectively. Consequently, given an input
video, we convert the frame descriptors {fRGB

1 , . . . , fRGB
N },

{fCN
1 , . . . , fCN

N }, and {fTPN
1 , . . . , fTPN

N } into the three video
signatures hRGB, hCN, and hTPN, respectively.

III. CLUSTERING NEAR-DUPLICATE VIDEOS

We develop an NDV clustering algorithm for managing a
video database. First, we conduct pairwise video matching. Let
us describe the matching of video signatures based on the RGB
histograms only, since the matching based on the color name
histograms and the ternary patterns are performed similarly.
We measure the dissimilarity between two video signatures
hRGB
i and hRGB

j using the Hellinger distance [23], given by

d(hRGB
i ,hRGB

j ) =√√√√√1− 1

KRGB
√
h̄RGB
i h̄RGB

j

KRGB∑
k=1

√
hRGB
i (k)hRGB

j (k)

(3)

where h̄RGB
i and h̄RGB

j are the element means of the vectors
hRGB
i and hRGB

j , respectively. Also, KRGB is the dimensionality
of the RGB histogram signatures, i.e., KRGB = 500. Then, we
construct the binary matching matrix ARGB ∈ RM×M , where
M is the number of videos in the database. If the Hellinger
distance d(hRGB

i , hRGB
j ) is smaller than a threshold, we match

the corresponding two videos and assign bit ‘1’ to the (i, j)th
element in ARGB. Specifically,

aRGB
ij =

{
1 if d(hRGB

i ,hRGB
j ) < ρRGB,

0 otherwise,
(4)

where ρRGB denotes the matching threshold. We generate
the matching matrices ACN and ATPN similarly. Then, we
construct the unified matching matrix A = [aij ] by

aij = aRGB
ij ∨ aCN

ij ∨ aTPN
ij (5)

where ∨ denotes the binary addition. The matching thresholds
ρRGB, ρCN, and ρTPN are tightly assigned with small numbers
0.4, 0.4, and 0.5, respectively. This is because the three
kinds of video signatures are robust to complementary near-
duplication types, and a pair of NDVs are matched via (5) as
long as at least one kind of their video signatures are similar
to each other.

Despite this complementary matching rule, some NDVs
may be undetected and some different videos may be falsely
detected. Therefore, we refine the pairwise matching results by
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TABLE I
NEAR-DUPLICATION TYPES IN THE MCL-ONEVID DATASET. A VIDEO

MAY EXPERIENCE ONE OR MORE TYPES OF NEAR-DUPLICATION.

Near-duplication types Frequency
Identical 10 %
Resolution change 80 %
Cropping 30 %
Intensity adjustment 40 %
Color change 20 %
Logo/Subtitle insertion 40 %
Trimming 15 %
Contents modification 5 %
Unclassified 5 %

exploiting the overlap ratio γij between the NDVs of videos
i and j, defined as

γij =
|Mi ∩Mj |

max (|Mi|, |Mj |)
(6)

where | · | denotes the number of elements in a set. Mi and
Mj are the set of NDVs of videos i and j, which are detected
by the pairwise matching, respectively. Next, we refine the
matching by

âij =

{
1 if γij > δ,
0 otherwise, (7)

where δ = 0.5 is a threshold. With this refinement, some new
matches are inserted and some old matches are eliminated.
Finally, using the refined matching matrix Â = [âij ], we
construct a graph whose nodes and edges represent videos
and near-duplicate matches, respectively. To determine NDV
clusters, we find connected components in the graph by
employing the depth-first search [24].

IV. EXPERIMENTAL RESULTS

A. Dataset: MCL-ONEVID

To simulate online video searching, we have collected
NDVs from video-sharing websites YouTube [25], Vimeo [26],
and Todou [27]. We have made queries to select popular
videos. Videos, which have been retrieved with the same
query, include many NDVs. The resultant video dataset, called
MCL online near-duplicate video dataset (MCL-ONEVID), is
composed of 20,000 videos whose total duration is about 667
hours. Table I shows the frequencies of near-duplication types
in MCL-ONEVID.

B. Experimental Setting

We compare the proposed algorithm with two conventional
algorithms STF LBP [11] and MFH [13]. STF LBP employs
spatiotemporal features, and generates video signatures using
the inverted file method. MFH describes frames with a hybrid
of global and local features, and generates signatures based on
learning-based hashing.

As a preprocessing step, we eliminate borders within each
video. Since borders modify video signatures drastically, we
detect positions, luminance intensities of which are consistent
throughout all frames in a video, and eliminate them. Note

TABLE II
COMPARISON OF THE PRECISION, RECALL, AND F-MEASURE SCORES.
THE TOP THREE ROWS ARE THE PAIRWISE MATCHING RESULTS, WHILE

THE BOTTOM ROW LISTS THE SCORES USING THE NDV CLUSTERING
ALGORITHM IN SECTION 3. THE HIGHEST SCORE IN EACH METRIC IS

HIGHLIGHTED IN BOLDFACE.

Precision Recall F-measure

Pairwise STF LBP [11] 0.02 0.30 0.02

detection MFH [13] 0.59 0.80 0.33
Proposed 0.94 0.81 0.87

Clustering Proposed 0.93 0.86 0.89

that the border elimination is applied to the conventional
algorithms as well.

We assess the NDV detection performance using three
quality metrics: precision, recall, and F-measure. The precision
and recall scores are defined as

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (8)

where TP, FP, and FN denote the numbers of true positives,
false positives, and false negatives, respectively. A true positive
is a real NDV pair that is correctly matched. A false positive
is an irrelevant video pair that is mistaken for near-duplicates.
A false negative occurs when a real NDV pair is undetected.
The F-measure is defined as a weighted harmonic mean of the
precision and recall scores,

F-measure =
(1 + β) · Precision · Recall
β · Precision + Recall

, (9)

where β is set to 0.3 as generally done.

C. Near-Duplicate Video Retrieval Performance

Table II compares the precision, recall, and F-measure
scores. We observe that the proposed pairwise NDV match-
ing outperforms both STF LBP and MFH in all measures.
Moreover, the proposed NDV clustering further improves the
recall and F-measure scores at the cost of a small reduction
in the precision score. Especially, the clustering increases the
recall rate significantly by discovering unmatched pairs in the
pairwise matching.

STF LBP yields inferior results, since it employs ordinal
features only and cannot handle various near-duplication types
properly. Moreover, its temporally connected features are
redundant, since consecutive frames are similar in most videos.
MFH provides better results than STF LBP by exploiting
multiple features, but its early fusion strategy weakens indi-
vidual features. Also, its features are not specialized for the
NDV detection. In contrast, the proposed algorithm employs
three complementary features, which are designed to be robust
against different types of NDV modification. Consequently, the
proposed algorithm provides significantly higher scores than
STF LBP and MFH. Fig. 3 shows examples of NDVs in MCL-
ONEVID, detected by the proposed algorithm.

V. CONCLUSIONS

In this work, we proposed an effective NDV detector, which
employed three complementary video signatures to achieve
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Examples of NDV detection results. The videos in the same row are clustered into the same near-duplicate group by the proposed algorithm. Original
contents in (a) and (e) are edited with various near-duplication types, such as logos and subtitles (b, c, d, f), cropping (c, g), and photometric variations (b,
c, d, g, h).

high discriminative capability as well as robustness to various
near-duplication types. We used three frame descriptors: RGB
histogram, color name histogram, and ternary pattern. Then,
we adopted the bag-of-visual-words scheme to convert each
kind of frame descriptors into a video signature. We exploited
the three kinds of video signatures collaboratively to detect
NDV pairs. Moreover, we developed the clustering technique
to refine pairwise matching results and group NDVs. Experi-
mental results demonstrated that the proposed NDV detector
significantly outperforms the conventional detectors [11], [13]
on the extensive MCL-ONEVID dataset.
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