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Abstract—Human-robot interaction is an important compo-
nent for robots operating in human environments and verbal
interaction is in many cases the most intuitive and effective
solution for humans. Managing dialogues between physical agents
interacting in a physical environment brings additional chal-
lenges to virtual dialogue systems (eg. Siri or Google Now).
More channels of information are available, as gaze or hands
movements, which can modify or support verbal information.
Also exophoric references to different parts of the environment
can occur along the conversation. In this article we focus on the
problem of extending the representation of the dialogue context
to a physical environment and using this representation for
resolving exophoric references. We also describe an architecture
for integrating an open source dialogue manager in a service
robot. In this architecture, the aforementioned representation is
jointly built by different modules and it’s used by the dialogue
manager to ground utterances happening in the conversation.
Finally we describe several experiments performed for assessing
the utility of this architecture with actual robots in physical
scenarios.

I. INTRODUCTION

There is a sustained effort on managing situated multi-
modal interactions. We can summarize the additional chal-
lenges which arise in this sort of interactions as handling the
extra channels of information available (eg. gaze, gestures,
pointing) in comparison with purely verbal communication.
That is, in the first place producing richer output using these
extra channels, as for example synchronizing speech with eyes
or arms movement or other actuators available. And in the
second place understanding how information coming through
these channels modifies verbal information. What is more, the
environment itself plays a major role in situated interactions
as there are constant references to objects contained in it. The
meaning of spatial expressions (eg. at the end of, behind, near)
is affected by the geometry of the environment and by the spa-
tial configuration of the objects involved. All this non-verbal
information plus the environment itself compound what it’s
known as context of situation. In opposition with the context
of conversation, which refers to all the information explicitly
communicated along the conversation. Robots interacting in
physical environments should maintain these two contexts in
order to correctly understand and ground human utterances.

In this work we present a representation of the context
of situation which can be jointly built by different modules
in the system. This representation, based on the concept of
symbol anchoring [1], contains both geometrical and semantic

information about the objects in the environment (including the
human and the robot) which can be both used for enriching
the output (eg. allow the robot to look at the human) and
improving the interpretation of human utterances, in our case
by resolving exophoric references over the representation.
Furthermore, we present an architecture for building and
maintaining this representation and how we have proceeded in
order to integrate an open source dialogue manager – IrisTK
[2] – in this architecture.

II. RELATED WORK

As mentioned in the introduction, an increasing number
of works are being focused on handling different aspects of
situated multi-modal interactions. In a close direction to the
one presented here, in [3] Iida et Al. analyzes the effect of
gaze in the resolution of exophoric references. Also, in [4]
Misu et Al. uses multi-modal inputs of speech, geo-location,
gaze and dialog history to allow a dialogue system mounted on
a vehicle to answer drivers’ queries about their surroundings.
The present work can complement these ones in which it
proposes a representation which can be used to integrate
information coming from different modalities and to better
interpret human utterances.

III. DIALOGUE MANAGER

There are multiple dialogue managers available in the
community (eg. TrindiKit [5], RavenClaw [6]). From among
them we chose IrisTK [2]. There were several reasons for
this decision: (1) it’s actively maintained; (2) it’s Java based
and open source, which facilitated the integration in our
architecture (based on the ROS1 middleware in a Linux
environment); (3) the representation used for modeling the
state of the conversation is based on Harel statecharts [7],
which we find very convenient as a middle term between pure
FSM and Information State approaches, as TrindiKit.

IrisTK is comprised of a set of modules which communicate
through an internal message passing system. We developed
modules for speech recognition and speech synthesis which
connect through ROS services with nodes already present
in our architecture which provide these functionalities. The
dialogue manager, which is another module in the IrisTK

1http://www.ros.org
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Fig. 1. System architecture. Arrows represent communication between mod-
ules. There should be an arrow from the Speech Recognition Module to the
Dialogue Manager and a bidirectional arrow between the Planner and the
Reference Resolution Module. All the communications are handled using ROS
topics and services.

system, uses a variant of SCXML2 language for modeling
states and transitions (ie. the dialogue flow).

IrisTK is by default thought for being used in situated
interactions. It comes with modules for performing human
detection and face recognition, and it’s possible to store a
context of situation. This context will be conformed by an
identifier for each human being detected, which allows for
example to remember the information already told to that
person. The pose of the human can be store as well. This is
sufficient in simple scenarios in which, though the interaction
is situated, there are no exophoric references. Also in more
complex architectures in which several modules must jointly
maintain the context (eg. object detection, robot localization,
human detection, face recognition) keeping the representation
within the dialogue manager is not an optimal approach.

IV. CONTEXT OF SITUATION

The approach we had followed for representing the context
of situation is based on the concept of symbol anchoring [1].
Symbols represent objects in the environment (including the
robot itself and detected humans). Each sensor module in the
system (eg. object detection, human detection, face recogni-
tion, robot localization) is in charge of asserting symbols in
the representation and maintaining the “anchor” with the corre-
sponding perceptual information. The way of maintaining the
anchor differs from module to module. For example the face
recognition module is responsible for checking the identity of
detected humans and inferring if a detected human is already
present in the representation or should be asserted. In the case
of objects, the object detection module currently uses a very
simple logic, considering that all the objects are static. Thus
if the same object is detected in another location it will be
considered a different one and asserted to the representation.

2http://www.w3.org/TR/scxml/

One advantage of keeping the representation agnostic to the
characteristics of any concrete module is that new modules can
be easily plugged in or their logic for maintaining the asserted
symbols modified without affecting the rest of the architecture.

Information relevant to the interaction can be linked to any
of the symbols in the representation by any module (including
the dialogue manager). This information can be semantic or
geometric. For example if the object detection module detects
a mug, it would associate the label “mug” and the object
pose to its symbol. If during the interaction with a human
the dialogue manager learns that that concrete mug belongs
to that human, that information can be linked as well to the
symbol. It’s easy to notice that before the dialogue manager
can assert that a concrete mug belongs to the person the robot
is interacting with, the exophoric reference to the mug in the
conversation must be resolved first, ie. it’s needed to find out
which symbol in the representation corresponds to that mug. In
the next section we describe how this process is accomplished.

The other element in representation of the context of sit-
uation (aside from object symbols) is a semantic map of the
environment. This map consists of an occupancy grid with
labeled regions and a topological map indicating connections
between these regions [8]. The map is used for navigation
and for reducing the context when resolving references. That
is, if some region is mentioned in the reference, just objects
detected inside this region are considered for the resolution
(eg. “the mug in the kitchen”). Otherwise just the objects in
the region where the interaction is happening are considered.

Reference Resolution

In the architecture there is a dedicated module for resolving
references, the Reference Resolution Module (RRM). Its core
functionality is to assess spatial relations between objects in
the context representation. We will define a spatial relation
as a tuple < reg, rel, obj1, obj2 >. Where rel is one of the
supported spatial prepositions (ie. near, far, left, right, behind,
in front of, above, below, on) and obj1, obj2 are symbols in
the representation. reg is the label of a semantic region in the
map. The assessment of spatial relations requires that every
symbol has linked a pose and a class label. Each class label
has associated a 3D mesh which, jointly with the object poses,
is used in geometrical computations for the assessment. Each
spatial relation has an associated computational model which
given two 3D meshes and a semantic region returns a number
between 0 and 1 proportional to the applicability of the relation
for the two objects. A description of the used computational
models can be found in [9]. The variables relevant for the
evaluation of spatial relations in the models are the objects
dimensions, their relative pose and the dimensions of the
semantic region in which the objects are placed.

The RRM functionality for assessing spatial relations was
exploited for two different purposes in the performed experi-
ments. In the first case, given a spatial preposition, the class
labels of two objects and a semantic region (eg. “kitchen, on,
table, mug”), it’s required to infer the identity of these two
objects. That is, their symbols in the representation. In this
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Fig. 2. a) Robotino playing a game with a human. b) Turtlebot searching for a box. c) Visualization of the detected objects in a moment of the search and
the region the robot was exploring (red cells).

case the module will assess the spatial preposition for every
pair of objects in the representation of the right classes and
return those which obtained the highest applicability.

The second case is slightly different. Given a semantic
region reg, an object obj1 located inside of reg and a spatial
preposition rel, the module is asked where an object obj2 of
class label class could placed in reg if the spatial relation<
reg, rel, obj1, obj2 > stands. In this case obj1 is fixed and
existence of obj2 is hypothesized. That is, the question posed
to the RRM is ’if an object obj2 of class label class was in
region reg and the relation < reg, rel, obj1, obj2 > was true,
where obj2 would be most probably located in reg?’. In this
case the module assesses rel for an object of class label class
being in every position of a 2D grid covering the region reg.
It returns a 2D grid containing the result of the assessment for
each position. This way of accessing the RRM is used by the
planner in one of the experiments for guiding the search of an
object based on semantic information.

V. EXPERIMENTS

In this section are described the experiments performed for
testing the present representation and architecture. Though a
larger amount of data will be required in order to extract well
supported conclusions from these experiments, we believe it
is worth to include in this article a description of them and
the partial results obtained in order to show the utility of the
architecture and how it can fulfill its function of handling
interactions in situated environment and resolving exophoric
references. To support this conclusion we provide links to
videos showing runs of the experiments on actual robots3.

Two sets of experiments were performed. The first of them
was focused on assessing the dialogue manager performance
and the ability of the robot for engaging people into conversa-
tion. The other one was focused on testing the performance of
the Reference Resolution Module and its utility for resolving
exophoric references.

The Game Master Robot

This experiment was run using a Festo Robotino 3 platform
in the installations of TUM-CREATE in Singapore. Pocket

3Game master robot: https://youtu.be/6Au5u5K4Pt4. Look for an object:
https://youtu.be/ovtoHcvGsjk

Sphinx4 was used for performing ASR and CereVoice5 for
TTS. In order to make the interactions more natural, a micro-
phone mounted on the robot platform was used for capturing
voice. On top of the platform we mounted a tablet showing
the virtual face showed in Fig 2a. It was possible to control
the eye direction and the lips were synced with the speech.

The robot was continually navigating along the corridors
of the office looking for humans to interact with. All the
participants in the experiments were workers of the company
uninstructed and even unaware that an experiment was being
run. In the experiment, when a human is detected, the face
recognition module is activated for deciding if the human is
already stored in the representation or if a new symbol must
be added. The human detection module links a pose to the
symbol representing the human and continuously updates it.
If the human is not known, the dialogue manager is called with
the goal of asking his name. Once the human tells his name,
it’s linked to the symbol and is used in future interactions
to personalize the conversation and letting the human know
that the robot remembers him. If the human is known, the
robot tries to engage him to play a simple game that involves
the human guessing a number between 1 and 10. Every time
the human tells a number the robot gives him feedback by
telling him if it was lower or higher than the correct number.
After the interaction, the number of times the human needed
to guess the number is linked to his symbol. Also if during
the interaction the human indicated that he was bored or didn’t
want to play, this information is also linked to the symbol. The
next time the human is found this information is used to recall
how many guesses he needed last time or for not interacting
with him at all. An example illustration is shown in Fig 2a.

The human and robot poses are used to make the robot eyes
look at the human. This action enforces the impression that the
robot is aware of the human and that it’s attending him. This
in turn, along with the appealing interface, seems to have an
effect in catching the human attention and therefore improving
the quality of the interaction. However more experimental data
would be needed in order to assess this effect.

The main source of misunderstanding during the interaction

4http://www.speech.cs.cmu.edu/pocketsphinx/
5https://www.cereproc.com
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was the ASR module. As the microphone was installed on
the robot platform, Pocket Sphinx performance was limited.
With a high frequency when the human told one number,
Pocket Sphinx recognized a different one. This made the robot
feedback inconsistence and made people interacting with him
to want to finish the game before guessing the number.

The Look for an Object Scenario
This experiment was run using a turtlebot in the Institute of

Industrial Robotics (CSIC-UPC) in Barcelona, Spain. In this
case human utterances were communicated to the robot using a
keyboard. The Stanford CoreNLP Toolkit6 was used to extract
spatial relations from the input sentences. Object detection was
performed using Artags and the Alvar detector7.

In the experiments, the robot goal was to find an object of
a certain class. The object could be anywhere inside the envi-
ronment which was limited to a single room. Before starting
the search the robot asked for information which could help it
to find the object. This information consisted of a description
of the object location formed by a series of spatial relations
with other objects in the environment. The participants of the
experiment were told about this fact and also about which
spatial relations they could use. The description was used by
the robot for performing indirect search. That is, whenever an
object was detected, it was checked if an object of its class
was related to the goal object in the description. If that was
the case the reference resolution module was asked for the
region in which the searched object could be. The returned
grid was binarized using a threshold (usually of 0.7). The
points over the threshold were explored. When there was no
regions to explore, the robot performed a random exploration
of the environment. This process continued until the object
was found or the whole environment was explored.

Fig 2b corresponds to a case in which the robot was looking
for a box. The description in this case was: “the box is near
a table. the box is close to a bin. the box is close to a second
bin”. In Fig 2c is shown a visualization of the region the robot
was exploring after detecting a table and two bins.

VI. CONCLUSIONS AND FUTURE WORK
Human-Robot interaction is a crucial issue in order to

seamless integrate service robots in human environments. This
interaction can be performed using different interfaces as text
or graphical UIs. Though this interfaces may suffice, and in
some cases optimize the interaction, for giving a robot simple
commands or request encyclopedic information, complete and
engaging interactions would require the ability of holding
verbal conversations. In the present article we have described
our effort for dealing with one of the problems specific to
dialogues situated in physical environment, the representation
of the context of situation and exophoric reference resolution
upon of it. The representation combines semantic and geomet-
rical information necessary for resolving the references. The
modular structure of the proposed architecture allows different

6http://nlp.stanford.edu/software/corenlp.shtml
7http://virtual.vtt.fi/virtual/proj2/multimedia/index.html

modules to assert and maintain specific kind of symbols into
the representation. As semantic information can be linked to
the symbols, the dialogue manager can easily store relevant
information learned through conversations with humans and
retrieve it in future interactions.

One limitation of the dialogue management in our current
architecture is that just purely exophoric references had been
considered. For handling actual conversations the inference
mechanisms exposed along the article should be used along
with algorithms for resolving anaphoric expressions (eg. re-
solving pronouns). Other way for improving the architecture
would be using ontologies for storing the context represen-
tation. Ontologies, aside from providing a more structured
frame for storing symbols and relations between them, allows
to perform inferences and detect inconsistencies in the stored
knowledge. Other issue which has been left aside in the article
is the use of clarification dialogues for resolving ambiguities
in the references. That is, after evaluating possible grounding
for a reference, more than one object can have a high value
of applicability. In these cases we just take the object with
the highest one. The correct way to proceed would be to call
the dialogue manager for asking the human relevant questions
which allow to disambiguate the reference.
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