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Abstract— Nowadays there is an increasing interest on 

deploying spoken conversational agents to provide ubiquitous 

Question and Answering information to customers about 

corporate services and commercial products and supporting 

different users’ devices such as PC desktops or mobile phones. 

Unfortunately, creating an accurate system requires a lot of 

handwork, where developers must consider several factors such 

as the performance of the ASR system, the presence of typos in 

the transcribed queries, the large number of possible variations 

to ask for the same information using different sentences, or the 

subtle differences that could exist between similar, but 

semantically different, questions. In this paper, we propose a 

methodology for quickly creating robust spoken-based 

conversational agents with very low resources.  

Our solution only requires few hand-made query samples, 

which are automatically expanded to deal with the use of 

different synonyms and wordings; next, spoken queries are 

automatically generated using a TTS system and then the audio 

files are corrupted to simulate different noise conditions and 

environments that the final users can experiment when they 

query the system using their voice with means of their mobile 

devices or by using a kiosk. Then, these audio files are 

subsequently transcribed using a general purpose ASR which 

produces an n-best list of recognized results that is first used to 

retrieve relevant documents and then re-ranked in order to 

select the final answer.  

Our tests on a set of 21 different topics proves that our 

proposal can get a 13% absolute better accuracy than a standard 

IR using an index with only in-domain answers and 6.3% better 

than a system including millions of negative out-of-domain 

candidate answers which is what it is expected for a scalable 

system.  

I. INTRODUCTION 

In recent years, the number of companies including 

conversational agents on their websites has increased 

continuously. These agents are responsible for providing 24/7 

service to customers looking for information available on the 

website, or for answering common questions about the 

services provided by the company (e.g. prices, promotions, 

deliveries, products availability, troubleshooting, FAQ, etc.). 

Unfortunately, the deployment of such systems is not an easy 

task as it requires a continuous development process where 

the system is improved as much as the users use it and the 

company decides to increase the amount of topics and 

answers it can handle. In addition, the system must provide 

accurate answers on a particular domain for which scarce or 

none previous examples are available, and in spite of the 

different words users use, possible errors in the query, or in 

spite of the similarities between the different topics and 

answers that the system is able to answer. 

This kind of “cold start” problems have been studied in the 

literature, especially in the context of recommendation 

systems for movies [1], books [2], or social networking [3], 

etc. In these cases, three different approaches are taken: 

collaborative filtering, content-based filtering, or a 

combination of both [4]. In the first case, the 

recommendations are based on collecting and analyzing a 

large amount of information about similar existing users/items. 

The advantage is that the system does not require a complete 

understanding of the user/item just finding similar 

users/items; in the second case, the recommendation is based 

on specific user’s profile information or item description. 

Here, the recommendations are based on similar items that the 

user liked in the past or that is viewing in the moment. 

Unfortunately, in the case of spoken Q&A systems, the 

cold start problem poses more difficulties since several 

modules must be fine-tuned in order to improve the overall 

performance of the system, e.g.: a) the ASR engine (including 

pronunciation dictionaries, as well as acoustic and language 

models) used to transcribe the user utterances, b) the content 

of the index or database used to retrieve the relevant 

information, and c) the dictionary of relevant keywords the 

system must be able to understand. In this paper, we focus on 

proposing robust solutions allowing the system to understand 

spoken queries automatically transcribed to retrieve relevant 

answers (i.e. high precision), and to deal with speech 

recognition errors, misspellings and out-of-vocabulary words.  

This paper is organized as follows: in section II we describe 

the data collected for creating the Q&A system for an 

important corporate site in Singapore; in section III, we 

describe the proposed domain-independent architecture; in 

section IV, we present our results and finally in section V we 

show the conclusions and future research. 
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II. DATA DESCRIPTION 

In order to develop our system, we were given with a set of 

21 different canonical questions and their corresponding 

answers. Since the goal of the proposed system is to provide a 

very high Precision@1 and considering that there were not 

any available logs to analyze how users could ask for 

information to the system, we manually generated 533 

question paraphrases from the original set of canonical 

questions (see Table 1) and then we classify them as positive 

(330) or negative (203), using as criteria that the paraphrase 

would be considered as positive if its answer is given by the 

same answer provided for the canonical question, and as 

negative in case it was not. Therefore, some of these 

paraphrases were actually valid paraphrases of the canonical 

questions, while others were invalid distractors. Consider for 

instance the following canonical question "Can I bring my pet 

to your corporate offices?" with the corresponding answer: 

"Yes, however the pet must be caged up or kept in a leash”. 

For this case, some examples of valid positive question 

paraphrases are: 

 

 “Is there any restriction to bring my pet along?” 

 “Is it possible to take my dog to your place?” 

 "Are cats allowed in your installations?" 

 “Tell me if there are restrictions to go with my cute 

puppy to your building” 

 

While negative examples are:  

 

 “Can I buy a pet fish in your place?” 

 "Is there any pet veterinarian in the building?" 

 “Which pets are forbidden to bring?” 

 

Notice from these paraphrases that, although some of the 

positive examples could require a minor rephrasing of the 

answer for it to be coherent with the question, the answer can 

still be considered as appropriated and useful to the user. On 

the other hand, it is clear that the classification task is very 

difficult since the negative examples belongs to the same 

topic of questions (i.e. pets), and could be formulated using 

very similar words to the ones occurring in the positive 

examples. For the case of negative examples, the expected 

behavior of the system is to inform the user that there is not 

an available answer for that particular question and offer a 

sorted list of related questions.  

Taking into consideration the variability of the paraphrases, 

an important desired characteristic of the proposed system is 

that it must be able to allow the use of synonyms and 

hypernyms (which we explain in section C). On the other 

hand, since a high accuracy in the answers is required, we 

included a question-type classifier based on regular 

expressions that automatically identifies the type of factoid 

query posed by the user (i.e. comparison, how many, how 

much, how to, need request, why, what, when, where, which, 

who, and none) reducing the possibility of the system to 

provide an answer that cannot match the type of query. 

Finally, since our proposed system must be scalable with 

regards to new questions and topics, as well as dealing with 

many other kind of negative examples, we extended our set of 

negative examples for the original question dataset (i.e. the 21 

canonical questions) with Q&A pairs from the Webscope L6 

Yahoo! Answers Comprehensive Questions and Answers 

version 1.0. This corpus is a collection of questions and 

answers posted by people at the Yahoo! Answers website as 

of 10/25/2007. It includes a total of 4,483,032 questions and 

their corresponding answers plus a small amount of metadata, 

i.e., which answer was selected as the best answer, and the 

category and sub-category that was assigned to each question. 

Since some of the questions are not in English, we filtered out 

non-English questions and retained 3,895,406 queries.  

Table 1. Statistical information about the number of positive 

and negative paraphrases for each of the 21 canonical 

questions. 

Class C # C # C # C # C # 

Pos 1 19 6 17 11 15 16 15 21 14 

2 18 7 17 12 17 17 15   

3 19 8 13 13 13 18 12   

4 16 9 20 14 12 19 15   

5 16 10 10 15 20 20 16   

Neg 1 13 6 8 11 12 16 11 21 8 

2 11 7 10 12 10 17 9   

3 11 8 10 13 10 18 9   

4 9 9 9 14 9 19 10   

5 8 10 13 15 7 20 7   

 

III. GENERAL PURPOSE ARCHITECTURE 

Our current system takes advantage of previously deployed 

modules and algorithms. For instance, from [5] we borrowed 

the idea of performing a re-ranking over a set of pre-selected 

candidates. Therefore, in the current system, the first step (see 

section 3.4) is to retrieve a list of candidate answers from the 

index created with the canonical answers, the positive and 

negative paraphrases and also out-of-domain answers (i.e. 

Yahoo! Answers); then, the list is re-ranked using a SVM 

classifier (see section 3.5) that chooses the final system 

answer. From [6], we use the module that deals with 

transcription misspellings as well as the runtime platform that 

connects the client (a web browser or a mobile app) and the 

web server using web sockets. Below more details of the new 

modules are given. 

A. Automatic generation & recognition of spoken queries 

One important factor we took into account for deploying 

this spoken-based Q&A system is that it will be extensively 

used on public places, where different kinds of noise and 

environmental conditions are likely to occur. Since collecting 

audio data for all the possible canonical and paraphrase 

questions as well as environment conditions is a time and 

expensive process, we decided to simulate all user’s spoken 
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queries by converting the hand-made and automatic 

paraphrases text into voice by using Google TTS. Then, in 

order to simulate the different environment and noise 

conditions, the TTS audios were corrupted by adding different 

kind of noises at a several signal-to-noise level ratios (SNR). 

Although this procedure does not guarantee that the Q&A 

system is tested against the same distribution of ASR errors 

produced when using real speech, the advantage is that it 

allows us for quickly testing the deployed system under 

different conditions, while true on-site audio recordings are 

collected. For future deployments, we plan to validate this 

methodology by contrasting our current simulated results with 

those obtained using real speech. 

As mentioned before, in order to test the robustness of the 

ASR in the presence of different noise conditions and levels, 

we experimented adding noise to the generated speech data 

using 5 different signal-to-noise ratios: clean, 15 dB, 10 dB, 5 

dB, and 0 dB. In addition, we also considered two different 

kinds of noises: white and environmental. For the last one, we 

combined our TTS generated files with a set of creative 

commons audio files containing noise recordings of different 

public places (shopping centers, restaurants, airport, halls, 

etc.). The mixed files were generated using FaNT toolkit [8]. 

 

Table 2. Google ASR WER results on different audio 

conditions. Only results for successfully transcribed queries 

are reported. (w.Av. means weighted average). 

SNR 

(dB) 

White Noise Environment Noise 

 No 

Q 

Min. Max. 1-

Best 

No. 

Q 

Min Max 1-

Best 

0 4 96.7 96.7 96.7 109 60.4 77.4 67.4 

5 397 46.1 68.7 55.1 481 30.0 52.1 36.5 

10 531 18.9 42.3 25.6 531 10.5 32.9 15.1 

15 532 9.8 32.9 14.7 533 5.5 27.7 10.4 

Total 

w.Av. 

1464 23.2 46.2 29.8 1654 17.8 39.7 23.3 

 

Clean 

 No. Queries Min. 

WER 

Max. 

WER 

1-Best 

Total 533 5.8 28.8 10.1 

 

B. ASR N-Best lists 

After generating the clean and noisy speech files, we 

transcribed the audio by means of a general purpose ASR 

engine. Considering the study done in [9], for our experiments 

we also decided to use Google Speech ASR which provided 

us with a list of 5-10 best candidates and a confidence score 

for the first candidate. The purpose for not using a domain-

specific ASR was to account for the possibility of final users 

using their mobile built-in speech recognition system. 

After obtaining the ASR transcriptions we calculated the 

WER for the N-Best list considering three cases (see Table 2): 

using only the 1-best result, considering the best transcription 

in the list (min WER), and considering the worst transcription 

(max WER). From these results we can see that in most of the 

cases the n-best lists provided good transcriptions even with 

low levels of SNR. However, we can also see that not always 

the 1-best option provides the lowest WER. This fact 

motivated us, in the experiments reported in section B, i.e. to 

query the index with a combination of all the transcriptions in 

the corresponding n-best list. On the other hand, since it could 

happen that the ASR recognition result is not good (e.g. the 

ASR confidence is low or the number of candidates is low) 

the system should be able to prompt the user for asking the 

question again rather than starting the retrieval process. In 

order to allow the system to be aware of the quality of the 

input audio and the n-best list, and considering that the 

Google ASR only provides a confidence score for the first 

candidate, we decided to extract a set of metrics that can be 

tested against a predefined threshold to ask the user to repeat 

the question or to start the retrieving process. Following the 

features proposed in [11], and including some new features, 

we extracted the following ones: 

 

 The average perplexity of the n-best list candidates. Here 

the LM was trained on the one-billion-lm-corpus [12] 

using KenLM toolkit [13]. 

 First and Second Hypothesis LM N-gram perplexity. 

 The drop in the LM perplexity between the first and 

second hypothesis in the n-best list. 

 Average N-best Purity of all words in the N-best list 

 The percentage of words across all N-best list hypotheses 

which have an N-best purity of greater than one half.Min 

and Max number of words in the N-best Hypothesis. 

 Total Number of Words and vocabulary in the n-best list. 

 Number of sentence hypotheses in the N-best list. This 

number was usually 5 but in 7.5% of the times it was less 

(especially on noisy files). 

 Confidence score: Value returned by the ASR. 

 

Although in our current implementation we could not 

combine all these features to generate the final confidence 

score, we are considering applying re-ranking techniques as 

the one proposed in [10]. 

C. Automatic creation of alternative sentences 

One of the problems that the runtime system must face is 

the huge variability of valid paraphrases for each canonical 

question (i.e. generated by using synonyms, hyponyms or 

hypernyms). In the literature, we can find several algorithms 

for creating paraphrases combining different levels of 

abstractions and techniques [14][15]. Our proposed algorithm 

first extracts the Part-Of-Speech (POS) information and 

lemmatization for each word in the canonical question. Then, 

it looks for hyponyms and hypernyms in WordNet 3.0 

[16][17] whose similarity (calculated as the shortest path that 

connects the senses in the is-a-hypernym/hyponym taxonomy) 

is above a predefined threshold (in our experiments it was set 

to 0.6). Then, new alternative words are added by extracting 
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semantically and contextually related terms from Word2Vec 

[18][19] and Glove [20]. Finally, more candidates are further 

obtained for each word by using a Thesaurus dictionary 

considering both the word itself and its POS tag. Once all the 

possible expansions has been generated, we filter the 

candidates by taking only those paraphrases whose perplexity 

is not higher than a relative ratio between it and the perplexity 

of the original sentence (in our experiments we set the ratio to 

be 20%). Here, we used the same language model as in 

section 3.2. As a result we obtained 439 sentences from the 

original 21 canonical questions. Below we show some 

paraphrases generated from the canonical questions: Where 

can I post my letter? 

 

 Expanded: Where can I mail my letter? (POS) 

 Expanded: Where can I post my correspondence? (POS) 

 Expanded: How can I post my letter? (POS) 

 Expanded: Where can I publish my letter? (NEG) 

 

In the example, we can see that the expansion module is not 

perfect since it is possible to generate false positive (or false 

negative) examples that the designer must manually reassign 

to the corresponding category. However, what we have 

observed is that, in average, the number of true-positive and 

true-negative automatic paraphrases are higher than the false-

positive and false-negative cases, therefore the manual 

reassign procedure could be omitted. 

D. Index and search engine 

Currently we can find several open-source tools for 

indexing and searching such as Solr/Lucene, Sphinx, Whoosh, 

or Lemur. Most of them make use of vector space models to 

retrieve relevant documents based on the similarity between 

the vectors generated from the words used in the given 

transcribed query and the words occurring in the indexed 

documents. The advantage of these engines is that they 

provide all the algorithms and tools required to process the 

queries (e.g. tokenization, lemmatization, spelling correction, 

fuzzy-text search, weighting of terms in the query, Boolean 

operators, etc.), as well as to index the documents and to 

conduct a fast search. In our implementation, we decided to 

use Lucene to take all the advantages of it as both a baseline 

system and as a sub-component of our proposed system. 

Traditionally, a search engine for a particular domain is 

built only with in-domain documents. However, given the too 

few domain-relevant questions to be indexed in our case, this 

approach was not appropriated since it would not generated 

appropriated term-vectors and relevance weights. To solve 

this issue, our small set of in-domain canonical questions was 

stored in the index along with a large number of negative 

examples from Yahoo! Answers. For a given transcribed 

input query, the constructed index is used for retrieving a set 

of candidate questions. In our implementation, each test query 

is constructed by concatenating the corresponding N-best 

ASR hypotheses for each manually generated question 

paraphrases. The simplest way to get the system output is just 

to take the top-ranked candidate from the Lucene result, and 

the answer is decided based on the source category of it, as 

follows: 

 

𝑓(𝑥) = {
𝑦 𝑖𝑓 𝑑𝑥,𝑖 = 𝑐𝑦

𝑁𝐼𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (1), 

 

where x is an input query, 𝑑𝑥,𝑖 is the i-th item in the ranked 

list from Lucene and 𝑐𝑦  is the y-th canonical question in 

C={c1,...,c21}. This approach is expected to produce relatively 

precise outputs by considering the queries which have more 

similar surface forms to the negative examples than to the in-

domain questions as out-of-domain cases. However, the 

coverage of the method should be limited, because this 

process is performed only considering the surface form-level 

similarities. Thus, it will fail to retrieve the relevant answer 

when an input query has different surface forms from its 

corresponding in-domain example even if they have the same 

meaning to each other. This limitation could be worse with 

speech inputs, because ASR has the possibility of incorrect 

recognition for some important terms which play a crucial 

role in the retrieval. 

E. Document Re-ranking algorithm 

To enhance the recall of the proposed approach, with 

minimized precision loss, we propose a re-ranking stage. In 

this second stage, the Lucene results are re-ranked with a 

supervised learning to rank model trained on the ASR 

hypotheses for the manually created paraphrases described in 

Section II. In this work, we used SVM
RANK

 [21] which is a 

pairwise ranking algorithm learned from the ranked lists. For 

each pair of a query x in the training data and its i-th 

candidate in the Lucene results 𝑑𝑥,𝑖, the ranking score 𝑠𝑥,𝑖  is 

assigned as: 

 

𝑠𝑥,𝑖 = {
1 𝑖𝑓 𝑥 ∈ 𝑃𝑦

+ 𝑎𝑛𝑑 𝑑𝑥,𝑖 = 𝑐𝑦     

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (1) 

 

Where 𝑃𝑦
+

 is a set of positive paraphrases for the y-th 

canonical question. The candidate list with the scores 

provides the relative orders for a given query, and it is 

converted into a set of pair wise constraints which are trained 

by SVM
RANK

 with the following features: 

 

 N-gram Similarity: Cosine similarity between n-gram 

vectors from the surface forms of x and dx,i, where n is 1, 

2, and 3. 

 Keyword Similarity: Cosine similarity between keyword 

vectors extracted from x and dx,i. 

 Question Type Similarity: Cosine similarity between 

question type vectors extracted from x and dx,i. 

 Phonetic Similarity: Weighted sum of phonetic 

similarities computed based on Levenshtein distances 

between metaphones of aligned word pairs in x and dx,i. 

The aligned word pairs are selected by a maximum 

cardinality matching algorithm [22] on the bipartite graph 

between both keyword sets weighted by the similarities. 

The purpose of using this phonetic similarity was to 
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especially deal with the problem that the ASR was not 

able to correctly recognize some proper nouns or 

dialectal variations appearing in the questions, and 

unfortunately, we could not change the ASR vocabulary. 

However, in this case, we noticed that although the actual 

word was not recognized, a phonetically similar name 

was. For instance, consider the following canonical 

question “Where are the business centers located?”, in 

this case for a speech audio with 10 dB noise level, one 

of the ASR hypothesis was: “Where is a business enters 

locator”. Here, we see that the words centers and enters, 

and located and locator are phonetically similar therefore 

reinforcing the correct transcription form.  

 Semantic Similarity: Weighted sum of semantic 

similarities computed based on word embeddings 

generated by Word2Vec. The same graph matching 

algorithm as the phonetic similarity is used but with 

semantic similarity for each aligned word pair.  

The weight value for each term or n-gram unit in 

computing cosine similarities and weighted summations is the 

corresponding TF-IDF score computed over the whole data 

collection stored in the index.  

 

IV. EXPERIMENTS AND RESULTS 

A. Experimental setup 

To demonstrate the effectiveness of our proposed architecture, 

we performed experiments on the data described in Section II 

following a two-fold cross validation process. The first set 

consisted of the first 11 canonical questions while the second 

one comprised the remaining 10. In addition, the Yahoo! 

Answers database was also split into two sets containing 

1,947,704 and 1,947,703 questions respectively. For each 

fold, we built the following three different types of systems: 

 

1) Baseline: Index with only the 21 canonical questions. 

2) Our proposed architecture without re-ranking and 

with/without sentence expansions. In the last case, the 

index contains not only canonical question and Yahoo! 

Answers data, but also automatically created sentences 

described in Section C.   

3) Our proposed architecture using re-ranking trained with 

various combinations of features: a) n-grams, b) 

keywords, c) question type, d) phonetic, e) semantic. 

 

Given a query, the top 100 candidate results from the full 

index were retrieved using Lucene with its default 

configuration and the standard analyzer. In addition, the 

candidates of a constrained search only on the set of canonical 

questions were also included along with a dummy candidate 

for the NIL cases. As training datasets for our proposed re-

ranking approaches, the manually expanded and annotated 

ASR hypotheses (section II) were also divided into the same 

two folds as the other resources according to their original 

canonical questions before the expansions. Then, the ranking 

models for each fold were trained using SVM
rank 

toolkit with 

the features described in section E. For cross-validation, the 

actual re-ranking on the candidates for a given query 

belonging to one of two sets was done with the model trained 

on the other set. Thus, we finally have two models for each 

system: one is from the first set of canonical and negative 

questions and the other is from the second set of the datasets. 

Then, the model trained with the first set was used to retrieve 

the answers to the queries in the second set, and vice versa. 

The system performance was evaluated by comparing to 

the manual annotations with micro-averaged precision, recall, 

and F-measure over the 21 canonical question categories. 

Additionally, average accuracy was also computed by 

considering the task as a 22-class multi-class classification 

problem. The 22 classes correspond to the 21 canonical 

questions plus the NIL category. 

B. Experimental Results 

Table 3 compares the performances among different 

approaches with various feature combinations. The baseline 

system only with in-domain collection achieved higher recall 

than the other systems, but its very low precision draws down 

the overall performance of the system in terms of accuracy. 

On the other hand, the use of a large amount of out-of-domain 

questions contributed to improve the precision and the 

classification accuracy of the second system compared to the 

baseline. However, it still failed to achieve higher 

performance in F-measure because of a falling-off in recall. 

This lack of coverage problem had been mitigated with re-

ranking models. Especially, the model incorporating all the 

proposed features outperformed the baseline by 14% absolute 

in accuracy and 5% absolute in F-measure. This result is due 

to a large increase in recall (as compared to the system 

without re-ranking), while the drop in precision between two 

cases is not big. 

Table 3. Results on Precision, Recall, F-Measure, and 

Accuracy for the different systems  

 

Without Automatic 

Expansions With Automatic Expansions 

P R F A P R F A 

1 43.01 65.88 52.05 42.77 - - - - 

2 73.63 26.33 38.79 49.43 75.32 28.51 41.37 50.82 

3A 71.59 34.30 46.38 52.35 67.73 44.44 53.67 54.60 

3B 72.22 36.43 48.43 53.40 66.84 45.02 53.80 54.13 

3C 71.01 37.06 48.70 53.12 67.64 46.40 55.04 55.04 

3D 69.84 38.83 49.91 53.15 68.41 50.18 57.89 56.63 

3E 70.89 47.78 57.08 56.82 66.04 51.91 58.13 55.78 

 

Adding the automatically expanded sentences into the 

index had a beneficial influence into obtaining further 

coverage with respect to the previous systems. For every 

feature combination, the expansions contributed to achieve 

significantly higher recalls. Some of the automatically 

generated expansions might be noisy, which caused some 

reduction in the observed precisions. However, the much 
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higher gains in recall produced better performances in F-

measure, without any additional human effort. Finally, the 

model with all the features, as well as with the expanded 

sentences, produced the best result in F-measure, which is 6% 

absolute higher than the baseline. 

V. CONCLUSIONS & FUTURE WORK 

In this paper we have described a robust spoken question 

and answering system which allows users to access FAQ 

information about corporate services and facilities. The 

system has been tested against automatic generated spoken 

queries containing different levels and types of noise in order 

to simulate spoken queries done at crowded public places 

such as train/buses stations, airports, or shopping centers and 

recognized using a state-of-the-art general purpose ASR. The 

proposed architecture first takes into account the uncertainty 

on the recognized utterances by combining the information 

provided by ASR N-best lists. The system uses the ASR 

outputs to retrieve candidate responses from an index, which 

is based on a standard Lucene search engine. The retrieved 

candidates are then re-ranked by using a pair-wise algorithm, 

which has been found to achieve a 56.82% of accuracy (~6% 

absolute better than the traditional baseline system). The main 

advantage of the proposed system is that it is able to deal with 

very similar questions and providing only answers to those 

that are semantically similar to the canonical questions (high 

precision), but also allows for searching similar questions 

(high recall). 

As future work, we first propose to improve the algorithm 

for the automatic creation of question sentences by using 

paraphrasing techniques such as the ones proposed by 

[22][23]. Finally, we also want to improve the proposed re-

ranking algorithm by using semantic triplets, deep parsing, 

and question/answers type agreement as additional features 
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