
A Robust Spoken Q&A System with Scarce In-

Domain Resources

Luis Fernando D’Haro, Seokhwan Kim, Rafael E. Banchs
Institute for Infocomm Research - A*STAR

1 Fusionopolis Way, Connexis South

Singapore, 138632

E-mail: luisdhe@i2r.a-star.edu.sg Tel: +65-6408 2146

E-mail: kims@ i2r.a-star.edu.sg Tel: +65-6408 2766

E-mail: rembanchs@ i2r.a-star.edu.sg Tel: +65-6408 2802

Abstract— Nowadays there is an increasing interest on

deploying spoken conversational agents to provide ubiquitous

Question and Answering information to customers about

corporate services and commercial products and supporting

different users’ devices such as PC desktops or mobile phones.

Unfortunately, creating an accurate system requires a lot of

handwork, where developers must consider several factors such

as the performance of the ASR system, the presence of typos in

the transcribed queries, the large number of possible variations

to ask for the same information using different sentences, or the

subtle differences that could exist between similar, but

semantically different, questions. In this paper, we propose a

methodology for quickly creating robust spoken-based

conversational agents with very low resources.

Our solution only requires few hand-made query samples,

which are automatically expanded to deal with the use of

different synonyms and wordings; next, spoken queries are

automatically generated using a TTS system and then the audio

files are corrupted to simulate different noise conditions and

environments that the final users can experiment when they

query the system using their voice with means of their mobile

devices or by using a kiosk. Then, these audio files are

subsequently transcribed using a general purpose ASR which

produces an n-best list of recognized results that is first used to

retrieve relevant documents and then re-ranked in order to

select the final answer.

Our tests on a set of 21 different topics proves that our

proposal can get a 13% absolute better accuracy than a standard

IR using an index with only in-domain answers and 6.3% better

than a system including millions of negative out-of-domain

candidate answers which is what it is expected for a scalable

system.

I. INTRODUCTION

In recent years, the number of companies including

conversational agents on their websites has increased

continuously. These agents are responsible for providing 24/7

service to customers looking for information available on the

website, or for answering common questions about the

services provided by the company (e.g. prices, promotions,

deliveries, products availability, troubleshooting, FAQ, etc.).

Unfortunately, the deployment of such systems is not an easy

task as it requires a continuous development process where

the system is improved as much as the users use it and the

company decides to increase the amount of topics and

answers it can handle. In addition, the system must provide

accurate answers on a particular domain for which scarce or

none previous examples are available, and in spite of the

different words users use, possible errors in the query, or in

spite of the similarities between the different topics and

answers that the system is able to answer.

This kind of “cold start” problems have been studied in the

literature, especially in the context of recommendation

systems for movies [1], books [2], or social networking [3],

etc. In these cases, three different approaches are taken:

collaborative filtering, content-based filtering, or a

combination of both [4]. In the first case, the

recommendations are based on collecting and analyzing a

large amount of information about similar existing users/items.

The advantage is that the system does not require a complete

understanding of the user/item just finding similar

users/items; in the second case, the recommendation is based

on specific user’s profile information or item description.

Here, the recommendations are based on similar items that the

user liked in the past or that is viewing in the moment.

Unfortunately, in the case of spoken Q&A systems, the

cold start problem poses more difficulties since several

modules must be fine-tuned in order to improve the overall

performance of the system, e.g.: a) the ASR engine (including

pronunciation dictionaries, as well as acoustic and language

models) used to transcribe the user utterances, b) the content

of the index or database used to retrieve the relevant

information, and c) the dictionary of relevant keywords the

system must be able to understand. In this paper, we focus on

proposing robust solutions allowing the system to understand

spoken queries automatically transcribed to retrieve relevant

answers (i.e. high precision), and to deal with speech

recognition errors, misspellings and out-of-vocabulary words.

This paper is organized as follows: in section II we describe

the data collected for creating the Q&A system for an

important corporate site in Singapore; in section III, we

describe the proposed domain-independent architecture; in

section IV, we present our results and finally in section V we

show the conclusions and future research.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 47 APSIPA ASC 2015

lenovo
Typewritten Text

II. DATA DESCRIPTION

In order to develop our system, we were given with a set of

21 different canonical questions and their corresponding

answers. Since the goal of the proposed system is to provide a

very high Precision@1 and considering that there were not

any available logs to analyze how users could ask for

information to the system, we manually generated 533

question paraphrases from the original set of canonical

questions (see Table 1) and then we classify them as positive

(330) or negative (203), using as criteria that the paraphrase

would be considered as positive if its answer is given by the

same answer provided for the canonical question, and as

negative in case it was not. Therefore, some of these

paraphrases were actually valid paraphrases of the canonical

questions, while others were invalid distractors. Consider for

instance the following canonical question "Can I bring my pet

to your corporate offices?" with the corresponding answer:

"Yes, however the pet must be caged up or kept in a leash”.

For this case, some examples of valid positive question

paraphrases are:

 “Is there any restriction to bring my pet along?”

 “Is it possible to take my dog to your place?”

 "Are cats allowed in your installations?"

 “Tell me if there are restrictions to go with my cute

puppy to your building”

While negative examples are:

 “Can I buy a pet fish in your place?”

 "Is there any pet veterinarian in the building?"

 “Which pets are forbidden to bring?”

Notice from these paraphrases that, although some of the

positive examples could require a minor rephrasing of the

answer for it to be coherent with the question, the answer can

still be considered as appropriated and useful to the user. On

the other hand, it is clear that the classification task is very

difficult since the negative examples belongs to the same

topic of questions (i.e. pets), and could be formulated using

very similar words to the ones occurring in the positive

examples. For the case of negative examples, the expected

behavior of the system is to inform the user that there is not

an available answer for that particular question and offer a

sorted list of related questions.

Taking into consideration the variability of the paraphrases,

an important desired characteristic of the proposed system is

that it must be able to allow the use of synonyms and

hypernyms (which we explain in section C). On the other

hand, since a high accuracy in the answers is required, we

included a question-type classifier based on regular

expressions that automatically identifies the type of factoid

query posed by the user (i.e. comparison, how many, how

much, how to, need request, why, what, when, where, which,

who, and none) reducing the possibility of the system to

provide an answer that cannot match the type of query.

Finally, since our proposed system must be scalable with

regards to new questions and topics, as well as dealing with

many other kind of negative examples, we extended our set of

negative examples for the original question dataset (i.e. the 21

canonical questions) with Q&A pairs from the Webscope L6

Yahoo! Answers Comprehensive Questions and Answers

version 1.0. This corpus is a collection of questions and

answers posted by people at the Yahoo! Answers website as

of 10/25/2007. It includes a total of 4,483,032 questions and

their corresponding answers plus a small amount of metadata,

i.e., which answer was selected as the best answer, and the

category and sub-category that was assigned to each question.

Since some of the questions are not in English, we filtered out

non-English questions and retained 3,895,406 queries.

Table 1. Statistical information about the number of positive

and negative paraphrases for each of the 21 canonical

questions.

Class C # C # C # C # C #

Pos 1 19 6 17 11 15 16 15 21 14

2 18 7 17 12 17 17 15

3 19 8 13 13 13 18 12

4 16 9 20 14 12 19 15

5 16 10 10 15 20 20 16

Neg 1 13 6 8 11 12 16 11 21 8

2 11 7 10 12 10 17 9

3 11 8 10 13 10 18 9

4 9 9 9 14 9 19 10

5 8 10 13 15 7 20 7

III. GENERAL PURPOSE ARCHITECTURE

Our current system takes advantage of previously deployed

modules and algorithms. For instance, from [5] we borrowed

the idea of performing a re-ranking over a set of pre-selected

candidates. Therefore, in the current system, the first step (see

section 3.4) is to retrieve a list of candidate answers from the

index created with the canonical answers, the positive and

negative paraphrases and also out-of-domain answers (i.e.

Yahoo! Answers); then, the list is re-ranked using a SVM

classifier (see section 3.5) that chooses the final system

answer. From [6], we use the module that deals with

transcription misspellings as well as the runtime platform that

connects the client (a web browser or a mobile app) and the

web server using web sockets. Below more details of the new

modules are given.

A. Automatic generation & recognition of spoken queries

One important factor we took into account for deploying

this spoken-based Q&A system is that it will be extensively

used on public places, where different kinds of noise and

environmental conditions are likely to occur. Since collecting

audio data for all the possible canonical and paraphrase

questions as well as environment conditions is a time and

expensive process, we decided to simulate all user’s spoken

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 48 APSIPA ASC 2015

user
Typewritten Text

lenovo
Typewritten Text

queries by converting the hand-made and automatic

paraphrases text into voice by using Google TTS. Then, in

order to simulate the different environment and noise

conditions, the TTS audios were corrupted by adding different

kind of noises at a several signal-to-noise level ratios (SNR).

Although this procedure does not guarantee that the Q&A

system is tested against the same distribution of ASR errors

produced when using real speech, the advantage is that it

allows us for quickly testing the deployed system under

different conditions, while true on-site audio recordings are

collected. For future deployments, we plan to validate this

methodology by contrasting our current simulated results with

those obtained using real speech.

As mentioned before, in order to test the robustness of the

ASR in the presence of different noise conditions and levels,

we experimented adding noise to the generated speech data

using 5 different signal-to-noise ratios: clean, 15 dB, 10 dB, 5

dB, and 0 dB. In addition, we also considered two different

kinds of noises: white and environmental. For the last one, we

combined our TTS generated files with a set of creative

commons audio files containing noise recordings of different

public places (shopping centers, restaurants, airport, halls,

etc.). The mixed files were generated using FaNT toolkit [8].

Table 2. Google ASR WER results on different audio

conditions. Only results for successfully transcribed queries

are reported. (w.Av. means weighted average).

SNR

(dB)

White Noise Environment Noise

 No

Q

Min. Max. 1-

Best

No.

Q

Min Max 1-

Best

0 4 96.7 96.7 96.7 109 60.4 77.4 67.4

5 397 46.1 68.7 55.1 481 30.0 52.1 36.5

10 531 18.9 42.3 25.6 531 10.5 32.9 15.1

15 532 9.8 32.9 14.7 533 5.5 27.7 10.4

Total

w.Av.

1464 23.2 46.2 29.8 1654 17.8 39.7 23.3

Clean

 No. Queries Min.

WER

Max.

WER

1-Best

Total 533 5.8 28.8 10.1

B. ASR N-Best lists

After generating the clean and noisy speech files, we

transcribed the audio by means of a general purpose ASR

engine. Considering the study done in [9], for our experiments

we also decided to use Google Speech ASR which provided

us with a list of 5-10 best candidates and a confidence score

for the first candidate. The purpose for not using a domain-

specific ASR was to account for the possibility of final users

using their mobile built-in speech recognition system.

After obtaining the ASR transcriptions we calculated the

WER for the N-Best list considering three cases (see Table 2):

using only the 1-best result, considering the best transcription

in the list (min WER), and considering the worst transcription

(max WER). From these results we can see that in most of the

cases the n-best lists provided good transcriptions even with

low levels of SNR. However, we can also see that not always

the 1-best option provides the lowest WER. This fact

motivated us, in the experiments reported in section B, i.e. to

query the index with a combination of all the transcriptions in

the corresponding n-best list. On the other hand, since it could

happen that the ASR recognition result is not good (e.g. the

ASR confidence is low or the number of candidates is low)

the system should be able to prompt the user for asking the

question again rather than starting the retrieval process. In

order to allow the system to be aware of the quality of the

input audio and the n-best list, and considering that the

Google ASR only provides a confidence score for the first

candidate, we decided to extract a set of metrics that can be

tested against a predefined threshold to ask the user to repeat

the question or to start the retrieving process. Following the

features proposed in [11], and including some new features,

we extracted the following ones:

 The average perplexity of the n-best list candidates. Here

the LM was trained on the one-billion-lm-corpus [12]

using KenLM toolkit [13].

 First and Second Hypothesis LM N-gram perplexity.

 The drop in the LM perplexity between the first and

second hypothesis in the n-best list.

 Average N-best Purity of all words in the N-best list

 The percentage of words across all N-best list hypotheses

which have an N-best purity of greater than one half.Min

and Max number of words in the N-best Hypothesis.

 Total Number of Words and vocabulary in the n-best list.

 Number of sentence hypotheses in the N-best list. This

number was usually 5 but in 7.5% of the times it was less

(especially on noisy files).

 Confidence score: Value returned by the ASR.

Although in our current implementation we could not

combine all these features to generate the final confidence

score, we are considering applying re-ranking techniques as

the one proposed in [10].

C. Automatic creation of alternative sentences

One of the problems that the runtime system must face is

the huge variability of valid paraphrases for each canonical

question (i.e. generated by using synonyms, hyponyms or

hypernyms). In the literature, we can find several algorithms

for creating paraphrases combining different levels of

abstractions and techniques [14][15]. Our proposed algorithm

first extracts the Part-Of-Speech (POS) information and

lemmatization for each word in the canonical question. Then,

it looks for hyponyms and hypernyms in WordNet 3.0

[16][17] whose similarity (calculated as the shortest path that

connects the senses in the is-a-hypernym/hyponym taxonomy)

is above a predefined threshold (in our experiments it was set

to 0.6). Then, new alternative words are added by extracting

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 49 APSIPA ASC 2015

semantically and contextually related terms from Word2Vec

[18][19] and Glove [20]. Finally, more candidates are further

obtained for each word by using a Thesaurus dictionary

considering both the word itself and its POS tag. Once all the

possible expansions has been generated, we filter the

candidates by taking only those paraphrases whose perplexity

is not higher than a relative ratio between it and the perplexity

of the original sentence (in our experiments we set the ratio to

be 20%). Here, we used the same language model as in

section 3.2. As a result we obtained 439 sentences from the

original 21 canonical questions. Below we show some

paraphrases generated from the canonical questions: Where

can I post my letter?

 Expanded: Where can I mail my letter? (POS)

 Expanded: Where can I post my correspondence? (POS)

 Expanded: How can I post my letter? (POS)

 Expanded: Where can I publish my letter? (NEG)

In the example, we can see that the expansion module is not

perfect since it is possible to generate false positive (or false

negative) examples that the designer must manually reassign

to the corresponding category. However, what we have

observed is that, in average, the number of true-positive and

true-negative automatic paraphrases are higher than the false-

positive and false-negative cases, therefore the manual

reassign procedure could be omitted.

D. Index and search engine

Currently we can find several open-source tools for

indexing and searching such as Solr/Lucene, Sphinx, Whoosh,

or Lemur. Most of them make use of vector space models to

retrieve relevant documents based on the similarity between

the vectors generated from the words used in the given

transcribed query and the words occurring in the indexed

documents. The advantage of these engines is that they

provide all the algorithms and tools required to process the

queries (e.g. tokenization, lemmatization, spelling correction,

fuzzy-text search, weighting of terms in the query, Boolean

operators, etc.), as well as to index the documents and to

conduct a fast search. In our implementation, we decided to

use Lucene to take all the advantages of it as both a baseline

system and as a sub-component of our proposed system.

Traditionally, a search engine for a particular domain is

built only with in-domain documents. However, given the too

few domain-relevant questions to be indexed in our case, this

approach was not appropriated since it would not generated

appropriated term-vectors and relevance weights. To solve

this issue, our small set of in-domain canonical questions was

stored in the index along with a large number of negative

examples from Yahoo! Answers. For a given transcribed

input query, the constructed index is used for retrieving a set

of candidate questions. In our implementation, each test query

is constructed by concatenating the corresponding N-best

ASR hypotheses for each manually generated question

paraphrases. The simplest way to get the system output is just

to take the top-ranked candidate from the Lucene result, and

the answer is decided based on the source category of it, as

follows:

𝑓(𝑥) = {
𝑦 𝑖𝑓 𝑑𝑥,𝑖 = 𝑐𝑦

𝑁𝐼𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1),

where x is an input query, 𝑑𝑥,𝑖 is the i-th item in the ranked

list from Lucene and 𝑐𝑦 is the y-th canonical question in

C={c1,...,c21}. This approach is expected to produce relatively

precise outputs by considering the queries which have more

similar surface forms to the negative examples than to the in-

domain questions as out-of-domain cases. However, the

coverage of the method should be limited, because this

process is performed only considering the surface form-level

similarities. Thus, it will fail to retrieve the relevant answer

when an input query has different surface forms from its

corresponding in-domain example even if they have the same

meaning to each other. This limitation could be worse with

speech inputs, because ASR has the possibility of incorrect

recognition for some important terms which play a crucial

role in the retrieval.

E. Document Re-ranking algorithm

To enhance the recall of the proposed approach, with

minimized precision loss, we propose a re-ranking stage. In

this second stage, the Lucene results are re-ranked with a

supervised learning to rank model trained on the ASR

hypotheses for the manually created paraphrases described in

Section II. In this work, we used SVM
RANK

 [21] which is a

pairwise ranking algorithm learned from the ranked lists. For

each pair of a query x in the training data and its i-th

candidate in the Lucene results 𝑑𝑥,𝑖, the ranking score 𝑠𝑥,𝑖 is

assigned as:

𝑠𝑥,𝑖 = {
1 𝑖𝑓 𝑥 ∈ 𝑃𝑦

+ 𝑎𝑛𝑑 𝑑𝑥,𝑖 = 𝑐𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

Where 𝑃𝑦
+

 is a set of positive paraphrases for the y-th

canonical question. The candidate list with the scores

provides the relative orders for a given query, and it is

converted into a set of pair wise constraints which are trained

by SVM
RANK

 with the following features:

 N-gram Similarity: Cosine similarity between n-gram

vectors from the surface forms of x and dx,i, where n is 1,

2, and 3.

 Keyword Similarity: Cosine similarity between keyword

vectors extracted from x and dx,i.

 Question Type Similarity: Cosine similarity between

question type vectors extracted from x and dx,i.

 Phonetic Similarity: Weighted sum of phonetic

similarities computed based on Levenshtein distances

between metaphones of aligned word pairs in x and dx,i.

The aligned word pairs are selected by a maximum

cardinality matching algorithm [22] on the bipartite graph

between both keyword sets weighted by the similarities.

The purpose of using this phonetic similarity was to

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 50 APSIPA ASC 2015

lenovo
Typewritten Text

lenovo
Typewritten Text

lenovo
Typewritten Text

especially deal with the problem that the ASR was not

able to correctly recognize some proper nouns or

dialectal variations appearing in the questions, and

unfortunately, we could not change the ASR vocabulary.

However, in this case, we noticed that although the actual

word was not recognized, a phonetically similar name

was. For instance, consider the following canonical

question “Where are the business centers located?”, in

this case for a speech audio with 10 dB noise level, one

of the ASR hypothesis was: “Where is a business enters

locator”. Here, we see that the words centers and enters,

and located and locator are phonetically similar therefore

reinforcing the correct transcription form.

 Semantic Similarity: Weighted sum of semantic

similarities computed based on word embeddings

generated by Word2Vec. The same graph matching

algorithm as the phonetic similarity is used but with

semantic similarity for each aligned word pair.

The weight value for each term or n-gram unit in

computing cosine similarities and weighted summations is the

corresponding TF-IDF score computed over the whole data

collection stored in the index.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

To demonstrate the effectiveness of our proposed architecture,

we performed experiments on the data described in Section II

following a two-fold cross validation process. The first set

consisted of the first 11 canonical questions while the second

one comprised the remaining 10. In addition, the Yahoo!

Answers database was also split into two sets containing

1,947,704 and 1,947,703 questions respectively. For each

fold, we built the following three different types of systems:

1) Baseline: Index with only the 21 canonical questions.

2) Our proposed architecture without re-ranking and

with/without sentence expansions. In the last case, the

index contains not only canonical question and Yahoo!

Answers data, but also automatically created sentences

described in Section C.

3) Our proposed architecture using re-ranking trained with

various combinations of features: a) n-grams, b)

keywords, c) question type, d) phonetic, e) semantic.

Given a query, the top 100 candidate results from the full

index were retrieved using Lucene with its default

configuration and the standard analyzer. In addition, the

candidates of a constrained search only on the set of canonical

questions were also included along with a dummy candidate

for the NIL cases. As training datasets for our proposed re-

ranking approaches, the manually expanded and annotated

ASR hypotheses (section II) were also divided into the same

two folds as the other resources according to their original

canonical questions before the expansions. Then, the ranking

models for each fold were trained using SVM
rank

toolkit with

the features described in section E. For cross-validation, the

actual re-ranking on the candidates for a given query

belonging to one of two sets was done with the model trained

on the other set. Thus, we finally have two models for each

system: one is from the first set of canonical and negative

questions and the other is from the second set of the datasets.

Then, the model trained with the first set was used to retrieve

the answers to the queries in the second set, and vice versa.

The system performance was evaluated by comparing to

the manual annotations with micro-averaged precision, recall,

and F-measure over the 21 canonical question categories.

Additionally, average accuracy was also computed by

considering the task as a 22-class multi-class classification

problem. The 22 classes correspond to the 21 canonical

questions plus the NIL category.

B. Experimental Results

Table 3 compares the performances among different

approaches with various feature combinations. The baseline

system only with in-domain collection achieved higher recall

than the other systems, but its very low precision draws down

the overall performance of the system in terms of accuracy.

On the other hand, the use of a large amount of out-of-domain

questions contributed to improve the precision and the

classification accuracy of the second system compared to the

baseline. However, it still failed to achieve higher

performance in F-measure because of a falling-off in recall.

This lack of coverage problem had been mitigated with re-

ranking models. Especially, the model incorporating all the

proposed features outperformed the baseline by 14% absolute

in accuracy and 5% absolute in F-measure. This result is due

to a large increase in recall (as compared to the system

without re-ranking), while the drop in precision between two

cases is not big.

Table 3. Results on Precision, Recall, F-Measure, and

Accuracy for the different systems

Without Automatic

Expansions With Automatic Expansions

P R F A P R F A

1 43.01 65.88 52.05 42.77 - - - -

2 73.63 26.33 38.79 49.43 75.32 28.51 41.37 50.82

3A 71.59 34.30 46.38 52.35 67.73 44.44 53.67 54.60

3B 72.22 36.43 48.43 53.40 66.84 45.02 53.80 54.13

3C 71.01 37.06 48.70 53.12 67.64 46.40 55.04 55.04

3D 69.84 38.83 49.91 53.15 68.41 50.18 57.89 56.63

3E 70.89 47.78 57.08 56.82 66.04 51.91 58.13 55.78

Adding the automatically expanded sentences into the

index had a beneficial influence into obtaining further

coverage with respect to the previous systems. For every

feature combination, the expansions contributed to achieve

significantly higher recalls. Some of the automatically

generated expansions might be noisy, which caused some

reduction in the observed precisions. However, the much

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 51 APSIPA ASC 2015

lenovo
Typewritten Text

higher gains in recall produced better performances in F-

measure, without any additional human effort. Finally, the

model with all the features, as well as with the expanded

sentences, produced the best result in F-measure, which is 6%

absolute higher than the baseline.

V. CONCLUSIONS & FUTURE WORK

In this paper we have described a robust spoken question

and answering system which allows users to access FAQ

information about corporate services and facilities. The

system has been tested against automatic generated spoken

queries containing different levels and types of noise in order

to simulate spoken queries done at crowded public places

such as train/buses stations, airports, or shopping centers and

recognized using a state-of-the-art general purpose ASR. The

proposed architecture first takes into account the uncertainty

on the recognized utterances by combining the information

provided by ASR N-best lists. The system uses the ASR

outputs to retrieve candidate responses from an index, which

is based on a standard Lucene search engine. The retrieved

candidates are then re-ranked by using a pair-wise algorithm,

which has been found to achieve a 56.82% of accuracy (~6%

absolute better than the traditional baseline system). The main

advantage of the proposed system is that it is able to deal with

very similar questions and providing only answers to those

that are semantically similar to the canonical questions (high

precision), but also allows for searching similar questions

(high recall).

As future work, we first propose to improve the algorithm

for the automatic creation of question sentences by using

paraphrasing techniques such as the ones proposed by

[22][23]. Finally, we also want to improve the proposed re-

ranking algorithm by using semantic triplets, deep parsing,

and question/answers type agreement as additional features

ACKNOWLEDGMENT

This project has been supported by the SERC industrial

project (EC-2013-045). We also thank the Yahoo! Labs

Webscope Team for providing us access to the L6 Yahoo!

Answers Comprehensive Questions and Answers version 1.0

dataset.

REFERENCES

[1] J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal. “A

collaborative filtering approach to mitigate the new user cold

start problem,” Journal Knowledge-Based Systems, Vol. 26,

Feb. 2012, pp. 225-238.

[2] A. Elbadrawy and G. Karypis. "Feature-based similarity models

for top-n recommendation of new items," Department of

Computer Science, University of Minnesota, Minneapolis,

Minnesota, Tech. Rep (2013): 14-016.

[3] X. Zhou, Y. Xu, Y. Li, A. Josang, and C. Cox. “The state-of-

the-art in personalized recommender systems for social

networking,” in Artificial Intelligence Review, Vol. 37(2), Feb.

2012, pp. 119-132.

[4] A. Gunawardana and C. Meek. “A Unified Approach to

Building Hybrid Recommender Systems,” in Proceedings of the

third ACM conference on Recommender systems, pp. 117-124.

ACM New York, NY, USA, 2009.

[5] R. Banchs, and H. Li. "IRIS: a chat-oriented dialogue system

based on the vector space model," in Proceedings of the ACL

2012 System Demonstrations. Association for Computational

Linguistics, 2012, pp. 37-42.

[6] L. F. D’Haro, S. Kim, K. H. Yeo, R. Jiang, A. I. Niculescu, R.

E. Banchs, and H. Li. "CLARA: a multifunctional virtual agent

for conference support and touristic information," in

Proceedings International Workshop on Spoken Dialog

Systems, IWSDS15, Busan, South Korea, Jan 11-13, 2015.

[7] J. Yamagishi, T. Nose, H. Zen, Z. Ling, T. Toda, K. Tokuda, S.

King, S. Renals. “A Robust Speaker-Adaptive HMM-based

Text-to-Speech Synthesis,” in IEEE Audio, Speech, &

Language Processing, vol.17, no.6, pp.1208-1230, August

2009.

[8] G. Hirsch, “FaNT - Filtering and Noise Adding Tool”

Tech.Rep., Niederrhein University of Applied Sciences.

Available at http://dnt.kr.hs-niederrhein.de/

[9] F. Morbini, K. Audhkhasi, K. Sagae, R. Artstein, D. Can, P.

Georgiou, S. Narayanan, A. Leuski, and D. Traum. "Which

ASR should I choose for my dialogue system," In Proceedings

of the 14th annual SIGdial Meeting on Discourse and Dialogue,

pp. 394-403. 2013.

[10] R. Basili, E. Bastianelli, G. Castelluci, and D. Nardi. “Kernel-

based discriminative re-ranking for spoken command

understanding in HRI”, in AI*AI, 2013.

[11] T. J. Hazen, T. Burianek, J. Polifroni, and S. Seneff.

“Recognition Confidence Scoring for Use in Speech

Understanding Systems,” Proc. ISCA tutorial and Research

Workshop, ASR2000, Paris, France. September 2000.

[12] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P.

Koehn, T. Robinson. “One Billion Word Benchmark for

Measuring Progress in Statistical Language Modeling”. eprint

arXiv:1312.3005, 2013.

[13] K. Heafield. “KenLM: Faster and smaller language model

queries,” In Proceedings of the Sixth Workshop on Statistical

Machine Translation, ACL. pp 187–197, Edinburgh, Scotland,

July. 2011.

[14] I. Androutsopoulos, and P. Malakasiotis. "A survey of

paraphrasing and textual entailment methods." Journal of

Artificial Intelligence Research (2010): 135-187.

[15] N. Madnani, and B. J. Dorr. "Generating phrasal and sentential

paraphrases: A survey of data-driven methods." Computational

Linguistics 36, no. 3 (2010): 341-387.

[16] G. A. Miller. “WordNet: A Lexical Database for English”

Communications of the ACM Vol. 38, No. 11: 39-41, 1995.

[17] C. Fellbaum. “WordNet: An Electronic Lexical Database”.

Cambridge, MA: MIT Press. 1998, ed.

[18] T. Mikolov, K. Chen, G, Corrado, and J. Dean. Efficient

“Estimation of Word Representations in Vector Space”. In

Proceedings of Workshop at ICLR, 2013.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.

“Distributed Representations of Words and Phrases and their

Compositionality”. In Proceedings of NIPS, 2013.

[20] J. Pennington, R. Socher, C. D. Manning. "GloVe: Global

Vectors for Word Representation", in Proceedings of the

Empiricial Methods in Natural Language Processing (EMNLP

2014) 12 (2014).

[21] T. Joachims. “Optimizing search engines using click-through-

data”. In Proceedings of eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages

133–142, 2002.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 52 APSIPA ASC 2015

http://dnt.kr.hs-niederrhein.de/

[22] J. E. Hopcroft, and R. M. Karp. “An n^5/2 algorithm for

maximum matchings in bipartite graphs,” SIAM Journal on

computing, 2.4 (1973), pp. 225-231.Zhao, Shiqi, Xiang Lan,

Ting Liu, and Sheng Li. "Application-driven statistical

paraphrase generation." In Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language

Processing of the AFNLP: Volume 2-Volume 2, pp. 834-842.

Association for Computational Linguistics, 2009.

[23] D. Kauchak, R. Barzilay. "Paraphrasing for automatic

evaluation." In Proceedings of the main conference on Human

Language Technology Conference of the North American

Chapter of the Association of Computational Linguistics, pp.

455-462. Association for Computational Linguistics, 2006.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 53 APSIPA ASC 2015

