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Abstract—A single-shot multispectral camera equipped with
a filter array has the potential to promote a fast and low-
cost multispectral imaging system. We focus on the design of
a multispectral filter array and demosaicking in this paper
and propose a pathology-specific multispectral imaging system.
The spectral sensitivities and patterns of the filter array are
optimized by using training data of real pathological tissues.
The mosaicked image is demosaicked by considering the designed
filter array. We show the effectiveness of the proposed imaging
system by comparing the recovered spectrum and RGB image
with conventional methods.

I. INTRODUCTION

Multispectral images (MSIs) have been studied in the
fields of remote sensing, medical applications, and digital
archiving. As an example of a medical application, a color
correction method for hematoxylin and eosin (H&E)-stained
pathological images using a 16-band multispectral microscope
camera system has been reported [1], [2]. The pathological
diagnosis deals with the examination of tissues and cells under
a microscope. Fig. 1 shows an example of a pathological
image, a 20× optically zoomed liver stained with H&E, where
the dark dots indicate the nuclei. Color reproduction and
morphological characteristics of the nuclei/cells are important
for the pathological diagnosis, and a study [3] has examined
the color differences in the nuclei in a multispectral imaging
system. Since the spectral features of pathological tissues can
be estimated from MSI, some studies have explored the digital
staining of pathological tissues [4], [5]. However, limitations
persist in the techniques for capturing MSI because of the
complexity of assembling prisms or multiple sensor arrays
in order to detect signals. Inspired by the application of
color filter arrays (CFAs) to commercial digital RGB cameras,
multispectral filter arrays (MSFAs) have been studied to solve
this problem.

Two examples of MSFAs are shown in Fig. 2. Brauers et al.
[6] proposed a six-band MSFA arranged in 3 × 2 pixels in a
straightforward manner intended for faster linear interpolation.
Monno et al. [7] proposed a five-band MSFA and determined
that the sampling density of the G-band data was higher than
that of the other spectral bands because the human eye is more
sensitive to the G-band than to the other spectral bands. In
recent years, other approaches have been studied in [8]. Since
these studies design MSFA for reducing the spectral estimation
error or the color difference of CIE ∆E, MSFA will also be

Fig. 1: Example of a pathological image. H&E-stained liver,
20× magnification, 1920 × 1440, RGB image.

(a) (b)

Fig. 2: Examples of MSFAs. (a) Brauers et al. [6] (b) Monno
et al. [7].

effective for pathological images. However, the MSFA design
and the demosaicking method suited for a specific application
such as pathological images have not been studied. As we
can see from Fig. 1, the color distribution is biased toward
blue and magenta because the pathological image consists of
a limited number of human cells and its spectral distribution
is also very limited. Therefore, for pathological application
of MSFA techniques, the number of color filters of MSFA
can be reduced depending on the spectral distribution of the
pathological image, and thus, the demosaicked image quality
can be improved.

Here, we propose a new MSFA design method [9] and
demosaicking [10], but we have not examined their effect in
detail with respect to a specific application. In this study, we
apply these methods to H&E-stained pathological images and
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Fig. 3: Design flow for a multispectral filter array.

clarify the optimized MSFA pattern and demosaicked quality.
We use a 51-band MSI, which is captured by a multishot
multispectral camera, as the original image. First, measured
wavelengths and filter array patterns are designed to reduce
the recovered image quality by using our prior work [9]. After
optimizing the MSFA, we apply multispectral local directional
interpolation (MLDI) [10] for demosaicking. We finally show
that the proposed MSFA pattern outperforms the conventional
methods.

The rest of this paper is organized as follows: In Section II,
we describe our design method for MSFA. In Section III, we
explain our demosaicking method. We discuss the experiment
used for testing the proposed method and the results in
Section IV. Section V presents our conclusions.

II. FILTER ARRAY OPTIMIZATION BASED ON
PATHOLOGICAL IMAGES

First, we explore a method for optimizing the MSFA design
based on pathological images. The proposed method uses a
51-band pathological MSI as the original image and simulates
mosaicking and demosaicking on a computer. The proposed
design flow of MSFA is shown in Fig. 3 [9]. We explore the
MSFA pattern iteratively to minimize the demosaicked mean
square error (MSE). The proposed flow consists of two parts:
wavelength optimization and spatial pattern optimization. In
the wavelength optimization procedure, N bands are chosen
from L bands of the MSI so that the MSE is minimized. Here,
L denotes the number of original bands, N ≤ L, and spatial
mosaicking is not applied to the N -band MSI. After choosing
N bands, we optimize the spatial pattern of MSFA by using
simulated annealing [11]. After the optimized N -band MSFA
is obtained, N is decreased, and then, these procedures are
repeated. In this study, N = x2 and x denotes an arbitrary
positive integer. The detailed procedures for wavelength opti-
mization and pattern optimization are described in Section II-A
and Section II-B, respectively.

In the proposed design flow, some spectral bands of the
original MSI are not measured by MSFA because N ≤ L.
If the number of bands of MSFA is increased, the spatial
sampling interval of each band becomes sparser, which in turn
leads to a degradation of the demosaicking quality. Since the
number of bands of the optimized MSFA is not always L, we
assume N ≤ L and calculate MSEs for N = 4 to L.

The L-band MSI has to be recovered from the N -band
mosaicked MSI, but conventional demosaicking methods [6],
[7], [10] cannot interpolate such unmeasured bands. There-
fore, in the proposed MSFA design flow, we apply Brauers’
demosaicking [6] for recovering the N -band MSI and then,
apply Wiener estimation [12] for recovering the L-band MSI
from the N -band MSI. Here, the Wiener estimation matrix
consists of the first-order Markov process with the correlation
coefficient ρ = 0.9995[13], [14].

A. Wavelength optimization for MSFA

In the wavelength optimization procedure, we choose N
wavelengths from L. When choosing N from L, the total
number of combinations is LCN ; therefore, it is impractical to
explore all the combinations when L ≫ N . Hence, we choose
the N -band MSI from the L-band MSI iteratively as follows:
I(n) denotes an n-band MSI; I(n−1)

i (i = 1, . . . , n) represents
an n− 1-band MSI, which removes i-th band from I(n); and
f
(
I(n)

)
indicates an MSE between the estimated L-band MSI

from I(n) and the original MSI. n is initialized to L, and we
iteratively calculate I(n−1) as follows:

I(n−1) = arg min
I
(n)
i

f
(
I
(n)
i

)
(i = 1, . . . , n). (1)

After n := n−1, this process is repeated until n = N . Finally,
the optimized N -band MSI can be obtained.

B. Pattern optimization for MSFA

The spatial filter pattern is optimized from the obtained N -
band MSI in Section II-A. The pattern optimization procedure
determines the spatial arrangement of each of the N filters.
Here, let the MSFA size be x×x. For example, if an arbitrary
x×x MSFA is given, the mosaicked image can be calculated
from the N -band MSI, and then, the demosaicked L-band MSI
can be calculated by using Brauers’ demosaicking and Wiener
estimation. Thus, the MSE between the demosaicked and the
original MSI can be obtained if a pattern of x × x MSFA
is given. The global minimum of MSE can be obtained if
all MSFA patterns are examined, but such a calculation is
impractical. To optimize the MSFA pattern based on MSE,
we use simulated annealing. The optimization details are as
follows:

The set of center wavelengths (f1, f2, . . . , fN ) is given as a
precondition from the wavelength optimization procedure. For
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Fig. 5: Updating the interpolated pixels after MLDI (Step 2).

initialization, the filters are randomly arranged in an MSFA
block. Let S be the current state of the MSFA, and let the
neighboring state S′ be created by swapping two arbitrary
filters. The acceptance criterion for the neighboring states is
determined by comparing the MSE as follows:

p(∆, T ) =

{
1 (∆ ≥ 0)

exp
∆
T (∆ < 0)

(2)

∆ = MSES −MSES′ , (3)

where T denotes the temperature, MSES represents the MSE
of pattern S, and MSES′ indicates the MSE of pattern S′.
The annealing schedule is repeated for T := 0.999 · T , where
T is set to 1 in the initialization and is terminated at 10, 000
iterations. Finally, we adopt pattern S with the smallest value
of MSES as the optimized MSFA.

III. DEMOSAICKING FOR MULTISPECTRAL FILTER ARRAY

In this section, we explain the demosaicking algorithm of
MLDI [10]. Fig. 4 shows an overview of MLDI. First, the
center pixel surrounded by the north-west (nw), north-east
(ne), south-east (se), and south-west (sw) pixels is interpolated
by considering the gradient among the four abovementioned
neighboring pixels. Then, the center pixel surrounded by the
north (n), east (e), south (s), and west (w) pixels is interpolated.
This process is repeated until all the pixels are interpolated.

Then, the interpolated pixels are modified as shown in
Fig. 5. Fig. 4 uses four neighboring pixels to calculate the
gradient, but we can use eight neighboring pixels after Step 1
of MLDI. Therefore, we modify the already-interpolated pixels
by using eight neighboring pixels in Step 2.

A. MLDI Step 1

Let the interpolation target band be A, the reference band be
R, and the position of the interpolation target pixel be (i, j).
Here, “reference” means a band where the measured pixel at
(i, j) exists. First, the inter-band difference between the target
and the reference bands is calculated as follows:

dnw = Ai−t,j−t − (Ri,j +Ri−2t,j−2t)/2, (4)

where t denotes the square root of the block distance between
the target pixel and the measured (or already-interpolated)
pixel, and nw represents the north-west direction from the
target pixel. As in (4), the north-east, south-east, and south-
west inter-band differences are calculated as dne, dse, and dsw,
respectively.

The gradient weight is calculated as follows:

wnw = 1/(|Ai−t,j−t −Ai+t,j+t|
+ |Ri−2t,j−2t −Ri,j |+ |R̃i−t,j−t −Ri,j |+ ε),(5)

where R̃ denotes a temporarily interpolated pixel by Bilinear
interpolation and ε represents a small value to avoid zero
division. The inter-band difference considering the gradient
can be calculated from d and w as follows:

d̄ =
wnwdnw + wnedne + wsedse + wswdsw

wnw + wne + wse + wsw
. (6)

Finally, the target pixel is obtained as follows:

Āi,j = Ri,j + d̄. (7)

Next, let the interpolation target be B, as shown in Fig. 4.
Bi,j is interpolated using four neighboring pixels located in
the north, south, west, and east directions. The inter-band
difference between the target and the reference bands in the
north is calculated as follows:

dn = Bi,j−t − (Ri,j +Ri,j−2t)/2, (8)
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Then, the gradient weight is calculated as follows:

wn = 1/(|Ri,j−2t −Ri,j |

+

t∑
k=1

|Mi,j−(t+(k−1)) −Mi,j+(t−(k−1))|

+
t∑

k=1

Wk|Mi−k,j−2t −Mi−k,j |

+
t∑

k=1

Wk|Mi+k,j−2t −Mi+k,j |+ ε) (9)

Wk =
exp(−k2/(2σ2))

2
∑t

l=1 exp(−l2/(2σ2))
, (10)

where M denotes a pixel in the mosaicked image, σ represents
the constant parameter, and Wk indicates the weight factor
whose summation is 0.5. We set σ to 0.5 in this study. The
east, south, and west gradient weights are calculated as we, ws,
and ww, respectively. The inter-band difference considering
the gradient can be calculated from d and w as follows:

d̄ =
wndn + wede + wsds + wwdw

wn + we + ws + ww
. (11)

Finally, the target pixel is obtained as follows:

B̄i,j = Ri,j + d̄. (12)

After interpolating A and B, we repeat the process by using
t = t/2 until t = 1.

B. MLDI Step 2

The first step of MLDI uses the four neighboring pixels in
the same band. For improving the interpolation accuracy, we
modify all the interpolated pixels C by using eight neighboring
pixels, as shown in Fig. 5. First, the inter-band difference
between the target and the reference bands is calculated as
follows:

dnw = Ci−1,j−1 −Ri−1,j−1, (13)

The other differences in the ne, se, sw, n, e, s, and w directions
are also calculated. The gradient weight can be calculated in
the same manner as (5) and (9). The inter-band difference
considering the gradient can be calculated from d and w as
follows:

d̄ = (wnwdnw + wnedne + wsedse + wswdsw

+wndn + wede + wsds + wwdw)

/(wnw + wne + wse + wsw

+wn + we + ws + ww). (14)

Finally, the target pixel is obtained as follows:

C̄i,j = Ri,j + d̄. (15)

(a)

(b)

(c)

Fig. 6: Multishot multispectral imaging system and test image.
(a) Microscope equipped with multishot multispectral imaging
system (b) H&E-stained liver, 20× magnification, RGB image,
1920 × 1440 pixels. (c) 512 × 512 pixels cropped from the
center of 1920 × 1440 pixels. This image is used for MSFA
design and demosaicking test.

TABLE I: PSNR (dB) of demosaicked MSI.

MSFA size 2× 2 3× 3 4× 4

Proposed 28.287 31.432 31.259
Shinoda et al. [15] 24.317 30.950 30.973

Bayer 24.309 31.009 30.970
Raster 24.317 30.952 30.820

IV. EXPERIMENTAL RESULTS

We show the validation of the proposed method by using
pathological MSI. For the experiment, we captured a 51-
band MSI with a microscope and a multishot multispectral
imaging system. Fig. 6 (a) shows the optical microscope
(Olympus, BX53) equipped with a multispectral imaging
system. The imaging system uses liquid crystal tunable filters
(CRi, Varispec VIS), and monochrome CCD (Point Grey,
Grasshopper 3). The pathological tissue is of an H&E-stained
liver (US Biomax, Hepatocellular Carcinoma Tissue Array
C054) and is shown in Fig. 6 (b). This image is captured with
20× magnification, 1920×1440 pixels, and 51 bands from 420
to 720 nm at 6 nm. Since the spatial resolution is too large
to optimize the MSFA pattern, we used an image measuring
512× 512 pixels shown in Fig. 6 (c), which is cropped from
the center of Fig. 6 (b). The 51-band MSI is regarded as the
original MSI, and we show the validation of the optimized
MSFA by mosaicking and demosaicking the 51-band MSI.

First, the peak signal-to-noise ratio (PSNR) of the opti-
mized MSFA is compared with some conventional empirical-
designed MSFAs, which are described in [15]. Table I shows
the PSNR of the demosaicked MSI. Here, to simply validate
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Fig. 7: Selected wavelengths after optimization: (a) 16 bands,
(b) 9 bands, and (c) 4 bands.
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Fig. 8: Optimized MSFA pattern: (a) 16 bands, (b) 9 bands,
and (c) 4 bands.

the proposed MSFA design, we use the conventional simple
demosaicking method [6] for all MSFAs. From the result, we
conclude that the proposed MSFA shows the highest PSNR.
This implies that the proposed method can design better MSFA
than the conventional methods. In particular, since the result of
9 bands is the highest value, we think that the best MSFA for
recovering the 51-band MSI is not always a 51-band MSFA. If
the number of measurement bands of MSFA is decreased, the
intra-band measuring density becomes sparse. The balanced
trade-off of the interpolation accuracy between the spatial and
the spectral domain appears at 3 × 3 MSFA in Table I, and
less than 10-band MSFA has the potential to become the best
MSFA for pathological imaging.

In Table I, Shinoda et al. [15] is used as a benchmark that
optimizes only the filter pattern. Since this method does not
optimize the wavelengths, the PSNR between the proposed
method and [15] corresponds to the performance of the wave-
length optimization. The proposed wavelength optimization
improves the PSNR by 0.482 dB in 3× 3 MSFA.

Although Bayer and Raster chose the filter wavelengths
at regular intervals, the proposed method chooses them by
considering the MSE of the demosaicked image. The chosen
wavelengths are shown in Fig. 7. Here, the numbers are the
band indices, which is named from the short to the long

TABLE II: PSNR comparison (dB) between Brauers and
MLDI demosaicking.

MSFA size 2× 2 3× 3 4× 4

Proposed MSFA + MLDI 28.396 N/A 32.331
Proposed MSFA + Brauers 28.287 31.432 31.259

(a) (b) (c)

Fig. 9: Comparison of demosaicked RGB images: (a) Original,
(b) 3 × 3 MSFA design and Brauers’ demosaicking [6], and
(c) 4× 4 MSFA design and MLDI demosaicking.

wavelengths in the 51-band MSI. From Fig. 7, the chosen
n bands are not always at regular intervals. This is because
the proposed algorithm chooses bands where the error of
the Wiener estimation is comparatively large. The optimized
pattern is shown in Fig. 8. The closer bands in the wavelength
domain are comparatively distant from each other in the
spatial domain, and similar results were confirmed in [15].
The proposed pattern is not a regular pattern such as the Bayer
pattern, but it could be one of the best solutions because the
wavelength intervals are not constant.

Table II shows the PSNR comparison between Brauers
and MLDI demosaicking. The proposed MLDI outperforms
Brauers, and the PSNR is higher than that of Brauers in 4×4.
Here, 3×3 is N/A because the proposed MLDI can only apply
to 2x×2x MSFA. Since 3×3 MSFA has the best performance,
according to Table I, the application of MLDI to 3× 3 MSFA
is an important future challenge.

The original and demosaicked images are compared in
Fig. 9. Here, these images are converted to an sRGB image
from the demosaicked MSI. Fig. 9(a) shows the original image,
(b) the demosaicked image obtained using the optimized 3×3
MSFA and Brauers’ demosaicking, and (c) the demosaicked
image obtained using the optimized 4× 4 MSFA and MLDI.
Although stepped noise can be seen in Fig. 9(b), the noise
is improved in Fig. 9(c). However, we can see a little noise
in Fig. 9(c). To compare more details in the spectral domain,
we show the spectra of the cytoplasm and the nuclear region
in Fig. 10. Here, “samples” refer to the measured bands in
MSFA. The recovered spectra of the proposed method form
a similar curve as the original, but the details differ from
the original in both Fig. 10(a) and (b). In particular, around
550-600 nm, the spectra cannot recover the original curve
because the sampling point does not exist within this range.
The bands within 550-600 nm were not sampled by MSFA
because the estimation error is comparatively small, but the
loss of the bumps may lead to serious problems if the original
spectrum within 550-600 nm has significant information for a
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Fig. 10: Comparison of the spectrum: (a) cytoplasm region
and (b) nuclear region.

TABLE III: PSNR (dB) of Fig. 11 (a) by using different
MSFAs.

MSFA of Fig. 11 (b) MSFA of Fig. 8 (b) Bayer Raster
31.411 31.168 31.033 30.941

pathological diagnosis. In the future, the meaningful bands for
a pathological diagnosis should be clarified, and the proposed
method should be modified to preferentially choose such
meaningful bands.

For evaluating the effectiveness of the optimized MSFA in
Fig. 8 (b), we use another test image. Fig. 11 (a) shows a
different pathological image captured from C054 slide. Fig. 11
(b) and (c) show the optimized MSFA and wavelengths.
In comparison between Fig. 8 (b) and Fig. 11 (b), three
wavelengths are different but other six wavelengths are almost
identical. Since many of the optimized wavelengths are almost
identical between these images, a trained MSFA by using a
certain pathological image can be potentially applied to other
pathological images. Table III shows the PSNRs of Fig. 11 (a)

(a)

9 20 1

45 32 23

36 51 41

(b)

420[nm] 720[nm]wavelength

9 20 32 451 23 36 41 51

(c)

Fig. 11: Different test image captured from C054 slide. (a)
512×512 pixels, RGB image. (b) Optimized 3×3 MSFA. (c)
Selected wavelength.

mosaicked with different four patterns. Here, we assume that
Fig. 8 (b) is a trained MSFA. The optimized MSFA of Fig. 11
(b) shows the best performance, but the trained MSFA by
Fig. 8 (b) shows also higher PSNR than the Bayer and Raster
patterns. The PSNR difference between Fig. 8 (b) and Bayer
is small, but the performance will be improved by increasing
the number of training data set.

On the basis of these results, we conclude that the proposed
MSFA design method, the obtained MSFA pattern, and the
demosaicking are more effective for capturing multispectral
pathological images than conventional methods. However, in
the future, MLDI needs to be improved and the meaningful
bands for a pathological diagnosis need to be clarified. Further,
the problem is that the number of test samples is small. For
the practical use of this method, the number of training images
for designing MSFA should be increased so that the proposed
method is applicable to various types of pathological images.
Since H&E-stained pathological tissue has very few colors,
MSFA for pathological images may contain a small number
of bands even if the amount of training data is increased. In
the future, we also intend to collect more training data and
calibrate our MSFA pattern.

V. CONCLUSIONS

In this paper, we proposed a new MSFA design suitable for
pathological images and evaluated its performance by using a
demosaicking method. We used a 51-band MSI as the original
image and simulated the mosaicking and demosaicking on
a computer. The proposed MSFA pattern and demosaicking
outperform conventional studies in terms of PSNR and can be
applied to multispectral imaging for pathological diagnoses.
In the future, we plan to improve the MLDI, clarify the
meaningful spectral bands, and use more training data.
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