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Abstract—Kernel density model works well for limited train-
ing data in acoustic modeling. In this paper, we improve the
kernel density-based acoustic model for low resource language
speech recognition. In our previous study, we demonstrated
the effectiveness of the kernel density-based acoustic model on
discriminative features such as cross-lingual bottleneck features.
In this paper, we propose to learn a Mahalanobis-based distance,
which is equivalent to a full rank linear feature transformation, to
minimize training data frame classification error. Experimental
results on the Wall Street Journal (WSJ) task show that the
proposed Mahalanobis-based distance learning results in sig-
nificant improvements over the Euclidean distance. The kernel
density acoustic model with the Mahalanobis-based distance also
outperforms deep neural network acoustic model significantly in
limited training data cases.

I. INTRODUCTION

Among the thousands of spoken languages used today, few

of them are studied by the speech recognition community

[1]. A major difficulty of ASR system deployment in a new

language is that ASR systems rely on a large amount of

training data for acoustic modeling. This requirement makes a

full fledged acoustic modeling process impractical for under-

resourced languages. Popular approaches are to transfer well-

trained acoustic models to under-resourced languages such as

universal phone set [2], cross-lingual tandem approach [3],

cross-lingual subspace GMMs (SGMMs) [4], KL-HMM [5],

[6], cross-lingual phone mapping [7], [8] and its extension,

context-dependent phone mapping [9], [10], [11].

In our recent study [12], the kernel density model [13] - a

special case of the exemplar-based approach [14] was applied

for acoustic modeling for under-resourced languages. Unlike

the parametric models, the kernel density model is a non-

parametric technique that uses the training samples directly

without estimating model parameters. This allows us to make

full use of the limited training data. In [12], we replaced the

GMM in the HMM/GMM model by the kernel density model

to estimate the tied-state likelihood scores. Our study showed

that by using cross-lingual bottleneck features, the kernel

density model consistently outperforms the HMM/GMM and

even the HMM/DNN models when the training data for target

language is less than 4 hours. However, we found that using the

kernel density with conventional MFCC feature yields worse

results than the HMM/GMM model. The reason could be that

the simple Euclidean distance used in the kernel density model

is not optimal for speech recognition tasks. For example, the

Euclidean distance treats the feature dimensions equally im-

portant and does not consider the correlation between feature

dimensions. This prompts us to search for a better distance

metric for the kernel density models.

In the exemplar-based learning literature, it is a popu-

lar approach to learn a distance metric from training data

for a specific application, and this is called metric learn-

ing [19]. For example, the large margin nearest neighbors

(LMNN) algorithm [21] is a supervised approach to learn

a Mahalanobis-based distance metric. LMNN seeks a linear

feature transformation such that, in the transformed space, the

k nearest exemplars from the correct class and exemplars from

other classes become separated by a larger margin. Another

metric learning technique is the locality preserving projections

(LPP) algorithm [20]. LLP learns a linear transformation Q

: Rd 7→ Rp where (p ≤ d) that aims to preserve the

neighborhood structure of the data.

In this paper, we apply distance metric learning to kernel

density-based acoustic model and learn a Mahalanobis-based

distance metric that is optimized for speech recognition. The

Mahanalobis-based distance learning is converted to a linear

feature transformation problem. The feature transform is learnt

in an iterative manner to optimize the frame classification

accuracy on the training set using the maximum mutual

information criterion (MMI).

The rest of this paper is organized as follows: Section II

presents the kernel density acoustic model. Section III de-

scribes our proposed distance metric learning method. Section

IV presents the experimental setups and results. Finally, we

conclude in Section V.

II. KERNEL DENSITY MODEL FOR ACOUSTIC MODELING

In this study, instead of using a GMM to model the feature

distribution of a triphone tied-state as in the conventional

HMM/GMM acoustic model, we use the kernel density model

similar to the one used in [13], [12]. Specifically, the likelihood
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of feature vector ot for speech class i.e. HMM tied-state sj ,

is estimated as follows:

p(ot|sj) =
1

ZNj

Nj
∑

i=1

exp
(

−
||ot − eij ||

2

σ

)

(1)

where eij is the ith training exemplar of class sj , ||ot− eij ||
is the Euclidean distance between ot and eij , σ is a scale

variable, Nj is the number of exemplars in class sj , and Z is

a normalization term to make Eq. (1) be a valid distribution.

From Eq. (1), the likelihood function is mathematically sim-

ilar to a GMM with a shared scalar variance for all dimensions

and Gaussians. Effectively, Eq. (1) puts a Gaussian-shaped

function at each training exemplar and sums all these Gaus-

sians with a normalization factor to the likelihood function.

There are four main steps to build an LVCSR system with

the kernel density acoustic model [12]:

Step 1 Build a triphone-based HMM/GMM acoustic model.

Step 2 Generate tied-state label for each frame (exemplar)

of training data using forced alignment. The training

exemplars are then grouped based on their tied-state

label.

Step 3 Use kernel density model to estimate HMM tied-state

likelihood probability p(ot|sj) as in Eq. (1)1.

Step 4 Plug the tied-state likelihood probability into a stan-

dard decoder such as Viterbi decoder for decoding.

III. DISTANCE METRIC LEARNING (DML) FOR KERNEL

DENSITY ACOUSTIC MODEL

To augment the kernel density model, a popular approach

is to learn a Mahalanobis-based distance as [19]:

d2(ot, eij) = (ot − eij)
TM(ot − eij) (2)

where d(ot, eij) is a Mahalanobis-based distance between

test feature vector ot and exemplar eij , M is a matrix to be

learnt. SinceM is a symmetric positive semi-definite matrix, it

can be factored asM = QTQ. Hence Eq. (2) can be rewritten

as

d2(ot, eij) = (Qot −Qeij)
T (Qot −Qeij). (3)

This implies the Mahalanobis-based distance can be in-

terpreted as the Euclidean distance in a transformed space,

ot → Qot [19]. The purpose of metric learning is to learn

transformation Q to transform the input space to a new

space where the kernel density model can perform better. A

similar spirit has been applied widely for HMM/GMM-based

acoustic models where principal component analysis (PCA)

[24], linear discriminant analysis (LDA) [25], heteroscedastic

LDA (HLDA) [26] and multiple HLDA [27] are used to project

input feature to a new space.

In this paper, a novel distance metric learning (DML)

approach is proposed for kernel density model. The proposed

method learns the Mahanalobis-based distance in Eq. (3) to

optimize the frame accuracy on the training set by maximizing

posterior probability p(sC |ot) of correct HMM state sC for

1In fact, scaled likelihood is used since the normalization term, Z in Eq.
(1) is the same for all classes and never needs to be computed [12].

each input feature ot. In this work, for each ot, the cost

function f which is a function of transformation Q is defined

as the MMI (Maximum Mutual Information) criterion as

follows:

f(Q) = log (p(sC |ot)) = log











p(ot|sC)p(sC)
J
∑

j=1

p(ot|sj)p(sj)











(4)

where J is the number of HMM tied-states, sC is the

correct state label for input vector ot, p(sj) is the state

prior estimated from training data, p(ot|sj) is the likelihood

probability estimated by the kernel density model as in Eq.

(5) for input feature ot and state sj .

p(ot|sj)=
1

ZNj

Nj
∑

i=1

exp
(

−(Qot−Qeij)
T (Qot−Qeij)

)

. (5)

Eq. (5) is derived from Eq. (1) by using the Mahalanobis-

based distance defined in Eq. (3) and the scaling factor σ is

set to 1.

The goal of distance metric learning is to find Q to

maximize f(Q). In this study, the gradient descent algorithm is

applied to update Q iteratively. The proposed distance metric

learning procedure is described as follows:

Step 1 Initialize transformation Q ∈ RD×D as an identity

matrix whereD is the dimension of the input feature,

ot.

Step 2 Compute the derivative of f with respect to Q, ∂f
∂Q

2.

Step 3 Update Q using the gradient descent method:

Qnew ← Qold +α ∂f
∂Q

, where α is the learning rate.

Step 4 Estimate the likelihood scores of all samples in the

development set using Eq. (5). Convert these scores

into state posteriors to compute the frame accuracy

in the next step.

Step 5 The recognized state label for each sample (frame)

in the development set is determined by picking the

state label of the highest posterior score in that frame.

Compute the frame accuracy in the development set

by comparing the recognized state label and the

ground truth, i.e. state label provided by forced align-

ment in the development set. If the frame accuracy

still increases go back to Step 2, otherwise we stop

the learning procedure.

IV. EXPERIMENTS

A. Experimental procedures

We evaluate the performance of the proposed method on

the WSJ task3. The WSJ task has been chosen as the target

under-resourced language as the effect of sufficient training

2The detailed derivation for computing derivative of f with respect to Q
is presented at http://www3.ntu.edu.sg/home2009/dova0001/DML.pdf

3We actually used the Aurora-4 corpus with clean training and test setting
recorded at 16kHz. The Aurora-4 clean data is a filtered version of the WSJ0
SI84 training data and Nov92 test data.
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data for it is well known, and we can hence clearly demonstrate

the effect of the proposed work on small training sizes. Four

different training data sizes of 7, 16, 55 and 220 minutes are

randomly selected from the full 15 hours of SI84 training set.

For each data size, we randomly extract around 10% from the

training data to build the development set. The rest is used

to train the models. The HMM/GMM system provides both

the state-tying decision tree and frame level state label for

the building of the hybrid HMM/DNN and the kernel density

(HMM/KD) systems. Since the training data sizes are small,

a small-scaled DNN architecture is used which consists of

3 hidden layers with 500 neurons in each hidden layer. The

DNNs are initialized using RBM pre-training [16]. The test

data are 166 clean utterances, or about 20 minutes of speech.

Two types of feature are investigated in this paper. The

first feature is 39 dimensional MFCC, including 13 static

features and its time derivatives. Utterance-based mean and

variance normalization (MVN) is applied to reduce recording

mismatch between training and testing conditions. The second

feature is cross-lingual bottleneck feature [10], [12]. Using

bottleneck feature generated by a bottleneck network which

is well trained with a source language is a good option to

improve the performance in the case of limited training data

conditions. Cross-lingual bottleneck feature has been used

effectively for HMM/GMM models [22], hybrid HMM/MLP

[10] and in our recent kernel density model [12]. The cross-

lingual bottleneck network is trained from more than 100 hours

of Malay read speech data [15]. The detailed description of

the bottleneck network architecture and the training procedure

can be found in [10], [12].

In this work, the focus is on acoustic model training with

limited training data, hence we assumed that the language

model and pronunciation dictionary are available. The standard

WSJ bigram LM and the 5k vocabulary are used in decoding.

In the hybrid model (HMM/DNN) and the kernel density

model (HMM/KD), for each HMM state, the probability of

jumping to the next state is simply set to 0.5.

B. Baseline models

The results in word error rate (WER) obtained by various

systems with four different amounts of target language training

data are presented in Table I. The first and second system

are the conventional HMM/GMM and hybrid HMM/DNN

using MVN-processed MFCC features. As expected, the WER

gets worse when less training data are used. The HMM/DNN

system outperforms the HMM/GMM system significantly for

all training data sizes.

The third row of Table I shows the results obtained by using

MFCC feature with the plain HMM/KD [13], i.e. without

distance metric learning. In this experiment, scaling factor σ in

Eq. (1) is set to 1. Unfortunately, the kernel density produces

worse results than the HMM/GMM baseline. As discussed in

Section III, the reason is that the Euclidean distance is not

robust to feature variation of MFCC.

Next, let’s examine the results obtained by using the cross-

lingual bottleneck feature. In Table I, row 8 and 9 are the same

TABLE I
WER (%) OBTAINED BY VARIOUS SYSTEMS AT FOUR DIFFERENT

TRAINING DATA SIZES. ROW 1-7 ARE RESULTS OBTAINED BY USING

MFCC FEATURE. ROW 8-13 SHOW RESULTS OBTAINED BY USING

CROSS-LINGUAL BOTTLENECK FEATURE. KD STANDS FOR KERNEL

DENSITY USED FOR ACOUSTIC MODELING, DML STANDS FOR DISTANCE

METRIC LEARNING, DST STANDS FOR DISCRIMINATIVE SCORE TUNING.

No Acoustic model
Training data (minutes)
7 16 55 220

Monolingual (MFCC feature)

1 HMM/GMM 30.9 23.1 14.0 9.1
2 HMM/DNN 24.1 17.9 11.3 7.8
3 Plain HMM/KD 33.7 26.2 15.5 11.5
4 HMM/KD+LDA 33.3 25.6 15.1 11.0
5 HMM/KD+DML 25.6 19.5 11.5 8.3
6 HMM/KD+DST 26.7 19.8 12.4 8.7
7 HMM/KD+DML+DST 23.3 17.1 9.7 7.0

Cross-lingual (cross-lingual bottleneck feature)

8 HMM/GMM 24.6 18.5 11.3 10.1
9 HMM/DNN 17.5 15.3 10.3 8.5
10 Plain HMM/KD 18.8 15.8 10.6 8.2
11 HMM/KD+DML 18.4 15.6 10.3 8.0
12 HMM/KD+DST [12] 15.8 13.3 9.9 7.9
13 HMM/KD+DML+DST 15.7 13.1 9.8 7.6

as the row 1 and 2, except that MFCC feature is replaced by

bottleneck feature. It is observed that using bottleneck feature

significantly improves both the HMM/GMM and HMM/DNN

systems especially for the case of very limited target language

training data. These results shows the benefit of using cross-

lingual features generated by the well-resourced language

models. Note that at 220 minutes, the HMM/GMM and

HMM/DNN with bottleneck feature actually perform worse

than those systems with MFCC feature. This could be due

to that the gain of bottleneck feature is offset by the loss

due to the mismatch between the two corpora. This can be

solved by applying adaptation (re-training) for the bottleneck

network when more target language training data are available.

Now, we focus on row 10 of Table I when the cross-lingual

bottleneck feature is used for the HMM/KD model. A large

improvement is observed over the result in row 3 where MFCC

feature is used. Moreover, in the case of using the cross-

lingual bottleneck feature, the HMM/KD model outperforms

the HMM/GMM system in row 8 significantly and even

compatible with the HMM/DNN system in row 9. This shows

that the HMM/KD model can be well employed when good

input features are used.

C. Distance metric learning for kernel density model

The experiments in the previous section indicated that the

kernel density model [13], [12] with the simple Euclidean

distance is outperformed by the conventional HMM/GMM

model when MFCC is used as the input feature. However,

using bottleneck feature, the kernel density model achieves a

significantly better performance than the HMM/GMM model.

To improve the kernel density model with MFCC feature,

the Euclidean distance is replaced by the Mahalanobis-based

distance as in Eq. (3). The transformation matrix Q is trained

following the procedure in Section III. We use the mini-batch

mode update strategy with the mini-batch size of 50, i.e. Q
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(c) BN + distance metric learning

Fig. 1. Illustration of the linear feature transformation matrices. BN stands for cross-lingual bottleneck features. The MFCC feature vector are ordered as
[c1,...,c12,c0], and their delta and acceleration versions.

is updated after every 50 frames using accumulative gradient.

The learning rate, α is set to 0.0002.

The result of the kernel density model with distance metric

learning (DML) for MFCC feature is listed in row 5 of Table

I. A large improvement is achieved over the plain kernel

density model in row 3. This improvement remains stable over

different training data sizes i.e. from 24% to 28% relative. The

result in row 5 is also significant better than the HMM/GMM

model in row 1 and approaching the performance of the

HMM/DNN model in row 2.

For comparison, we also apply LDA which uses the label of

training data to linearly separate classes. In this experiment,

MFCC is first applied LDA to keep all 39 dimensions and

then it is used as the input for the conventional kernel density

model. As shown in row 4 of Table I, using LDA just results

in a small improvement in WER over the plain kernel density

model with MFCC in row 3. The study in [23] indicated that

LDA suffers from a small sample size problem when dealing

with high-dimensional data. Our experimental results show

that LDA can give 4.3% relative improvement for the case

of 4 hours, this improvement drops to 1.2% when 7 minutes

of training data are used. In another experiment, we use the

standard Mahalanobis distance as in Eq. (2) where M = S−1

with S is the covariance matrix of input feature ot. However,

the result is even not as good as using the Euclidean distance

and hence is not reported here.

We also apply the DML for cross-lingual bottleneck feature,

the result is shown in row 11 of Table I. Unlike the case of

MFCC feature, applying DML for bottleneck feature achieves

only a small improvement over the plain kernel density model

in row 10. It indicates that DML is more important when we

apply the kernel density model to low level features such as

MFCC.

To give an insight to why the proposed DML approach can

improve performance of the kernel density acoustic model,

we compare the feature transformations learnt by different

methods. The MFCC feature transformations learnt by LDA

and the proposed DML are shown in Fig. 1(a), 1(b), respec-

tively. It can be observed that the transformation learnt by

DML has an obvious diagonal structure. From the values of

the diagonal elements, the weights of MFCC features c0-c12

are almost monotonically decreasing, meaning that lower order

MFCC features are more important than higher order MFCC

features for frame classification. It is also observed that there

are two off diagonal bars in the transformation, which model

the correlation between static and corresponding acceleration

features. On the other hand, there is no clear structure in LDA-

derived transformation matrix.

The DML learnt transformation matrix for bottleneck fea-

tures is shown in Fig. 1(c). It is observed that the BN transfor-

mation matrix is closer to the identity matrix than the MFCC

transformation matrix, although both are learnt by DML. The

diagonal values of the BN transformation are similar to each

other, meaning that all BN features contribute similarly to

the kernel density model and hence speech recognition. In

addition, there is no clear off-diagonal structure, this may

indicate that there is no obvious correlation between BN

features that can be modeled for better frame classification

performance. Above observations are reasonable considering

that BN features are extracted by a deep neural network that

was trained to discriminate sound classes. Hence there is less

gain to apply DML on BN features than on MFCC features.

D. Discriminative score tuning (DST) for kernel density model

Recently, the combination of generative and discriminative

models have been shown to improve performance of speech

recognition [28], [29]. To improve the performance of the

kernel density model, likelihood scores generated by the kernel

density model are further refined by the discriminative score

tuning (DST) module proposed in our previous study [12].

Specifically, a 2-layer neural network is placed on the top of

the kernel density model to fine tune the likelihood scores.

The number of inputs and outputs of the neural network is the

same and equal to the number of HMM states. This neural

network is trained with cross-entropy criterion to minimize

the training frame classification error.

The results of the kernel density model with DST are shown

in row 6 of Table I for the case of MFCC input and row 12 for

the case of bottleneck feature input. It can be seen that using

the discriminative score tuning can significantly improve the

performance of the kernel density model for both the cases

when MFCC and bottleneck features are used.
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Now we examine whether further improvement can be

achieved when both the DML and DST techniques are applied

for the kernel density model. As shown in row 7 of Table I,

applying the two techniques results in a significant improve-

ment over using individual techniques for the case of MFCC

feature. This demonstrates that DML and DST is highly

complementary. While the DML makes more discriminative

feature for the kernel density model, DST aims to fine tune

the likelihood scores in a discriminative manner. The result

of combination DML and DST for the case of cross-lingual

bottleneck feature is presented in row 13 of Table I. We can see

that the kernel density model with DML and DST provides the

best performance over the GMM and even the DNN models for

all four training data sizes with both the MFCC and bottleneck

feature inputs.

V. CONCLUSION

In this paper, we proposed a method to augment the non-

parametric kernel density-based acoustic model using distance

metric learning method. Specifically, the Mahanalobis-based

distance is realized by linear feature transformation and trained

to improve the frame accuracy on the training set using the

MMI criterion. With this approach, the performance of the ker-

nel density model is improved significantly. The experimental

results on the WSJ corpus showed that the proposed system

produces consistently better results than both the HMM/GMM

and HMM/DNN systems, up to 220 minutes of training data.

This shows that the proposed system has advantages over

conventional systems for small training sizes.

One issue of using the kernel density model is its high

computational cost for decoding especially when training

data size increases. To reduce the decoding time, pruning

techniques will be investigated in the future works.
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