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Abstract—In this paper, a method for lighting directions
estimation of the uniform texture images has been proposed. The
proposed algorithm does not require training database, and only
utilizes one input image for estimating the lighting directions.
By detecting the largest direction of the brightness changes of
the input image, the azimuth angle of the light source can be
estimated. The slant angle is estimated by generating a random
texture, whose density parameter and lighting directions are
controllable. By comparing the intensity distribution between the
input image and the generated texture, the slant angle can also
be estimated.

I. INTRODUCTION

In theory, it is possible to estimate the lighting direction
only from one single input image, because that the lighting
conditions can be observed as a part of the albedo for the
image. Actually, if the object’s surface is uneven, it will exist
different kinds of shadow (such as the self shadow and cast
shadow) along the direction of the light propagation. Since the
direction of light propagation is straight, and the light direction
and the shadow is always orthogonal to each other. Therefore,
the brightness change is significant along the direction of
light propagation. By detecting the largest direction of the
brightness change for the input image, the azimuth angle of
the light source can be estimated. In addition, a random texture
has been generated to assist in estimating the slant angle of
the input texture image.

II. RELATED WORK

Robust estimation of lighting directions is important in some
computer-vision applications, such as rendering the real-world
scene and 3D reconstruction based on photometric stereo [?].
The first kind of estimation algorithms for lighting direction
needed to know the geometry of the object. In [?], a simple
method for estimation of point light-sources was proposed.
The paramters of a light source at finite distance can be
estimated by shading on an object with known geometry
and Lambertian reflectance. Tachikawa et al. [?] proposed
a method to determine the lighting direction and diffuse
reflectance property from two images under different light
conditions. In [?], an approach for light source position and
reflectance estimation from a single view was proposed, but
need to know the surface normals of the object in the image,
which limits the real application.

The second kind of estimation algorithms required the
special feature for the input image, or under the special light
conditions. Li et al. [?] presented a method that integrated

multiple cues from shading, shadow and specular reflectance
for estimating directional illumination in a textured scene. This
method was suitable for the texture with obvious cast shadow.
In [?], an algorithm for estimating the projected light source
direction from a single image was proposed. The requirement
of this method was that there existed a segmentation of an
occluding contour of an object with locally Lambertian surface
reflectance in the image. The method in [?] can separate the
shading effects of a static outdoor scene due to the sunlight
and skylight. Hougen and Ahuja [?] estimated the light source
distribution based on the assumption of a lighting model
with point lights at infinity, which also limited the related
application in complex lighting conditions.

The third kind of estimation algorithm had to used the
special active light source or specialized acquisition device
to capture the input image. An effective way to recover the
illumination by using structure light is proposed in [?]. The
last kind of estimation algorithms for lighting direction were
applied for the texture image. [?], [?] developed a theory
for recovering the illuminants azimuthal angle from a single
image under a Lambertian model, but the estimation for slant
angle was not given in these paper. Ikeuchi and Sato [?]
proposed a method to estimate the parameters of reflection
model and direction of the light source from a pair of range
and intensity image. This method assumed that the reflectance
was uniform over the whole object. Literatures [?], [?], [?]
estimated the lighting direction based on the training method,
and the azimuth angle of the lighting direction can be accu-
rately estimated at the same time for texture classification. But
these methods required a lot of training samples and the time
complexity was high for lighting parameter estimation, which
is the limitation of previous algorithms for real application.

III. THE PROPOSED METHOD

We proposed an estimation method for lighting directions
of the uniform texture images. In this algorithm, the lighting
direction can be real-time estimated just from a single input
image. To simplify the discussion, we assume the following
constraints, and the issue of estimation for lighting directions
will be alleviated in the experiments.

(1) Reflection characteristics satisfies Lambertian model.
The light source is single and uniform parallel, however, the
light intensity and direction (the slant and azimuth angles) are
unknown.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 769 APSIPA ASC 2015



Fig. 1. The rock texture images captured in different azimuth angle(from left
to right, from top to bottom, the azimuth is 0◦, 10◦,. . . ,90◦ respectively).

Fig. 2. The frequency domain of the images in Fig.1 (from left to right, from
top to bottom, the azimuth is 0◦, 10◦,. . . , 90◦ respectively).

(2) The albedo of the object surface is uniform, namely the
albedo of the object should not have obvious texture direction.

Therefore, for estimation of lighting directions, our task is
how to effectively and accurately detect the main direction.
That is to say, the slant and azimuth angles need to be
estimated.

Fig.1 shows the rock texture images captured in different
azimuth angle. From left to right, from top to bottom, the
azimuth is 0◦, 10◦, 20◦, ,90◦ respectively. For the texture
images in Fig.1, we can see that the human eyes may not be
able to accurately judge the azimuth angle of the light source.
However, when the images in Fig.1 are transformed from
spatial domain into frequency domain, the azimuth change
of the light source can be clearly observed. Fig.2 shows the
frequency domain of the images in Fig.1. From Fig.2, it can
be seen that the frequency spectrums are gradually rotating
from 0 degree to 90 degree.

A. Estimating the azimuth angle of the input texture image

Inspired by the perception model of human eye [?], we use
the visual cortex enhancement model to detect the main direc-
tion (azimuth angle) in frequency domain for the input texture
image. Physiological researches show that the human visual
system has the characteristics of rapid perception outline, and
the Gabor function can well simulate these physiological char-
acteristics of human eye perception. The 2-D Gabor function
is defined as follows:

Gabor(u, v, σ) =
1

2πσ2
e−

u2+v2

σ2 (1)

where σ is the variance of Gabor function, (u, v) represents
the direction of Gabor function and is obtained by rotating the
(x, y) in Cartesian coordinate system. (u, v) can be expressed

Fig. 3. Human eye perception model based on Gabor function (from left
to right:2D Gabor function,edge enhancement model, direction detection
template).

by [
u
v

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
(2)

where (x, y) represents the center of human eye receptive
field; θ represents the rotation angle, namely the orientation
of the human receptive field. Then Gabor(u, v, σ) can also be
represented by Gabor(x, y, σ, θ).

The human eye also has the function of edge enhancement.
If an edge is a continuous contour, there will be an enhanced
effect along the edge in human eyes. Equation (3) has been
used to represent the edge enhancement function of human
eyes.

E(x, y, σ, θ) = Gabor(x, y, σ, θ)× (x2 − y2) (3)

In order to estimate the main direction of the frequency
domain, a threshold thr can be set to design the direction
detection templates T (x, y, σ, θ) for the texture edge enhance-
ment model as in equation (4).

T (x, y, σ, θ) =

{
1 E(x, y, σ, θ) >= thr
0 E(x, y, σ, θ) < thr

(4)

where the value of thr is set according covering 50% energy
of E.

Fig.3 shows the 2D Gabor function, edge enhancement
model and direction detection template. By computing the sta-
tistical averages of the product between frequency domain and
the direction templates, and recording the angle of maximum
according to equation (5), we can estimate the azimuth angle
of the input texture image as follows:

Az = {θ|max
θ
{mean(F (I) ∗ T (x, y, σ, θ))},

θ = 0◦, 5◦, . . . , 180◦}
(5)

where Az is the estimated azimuth angle, F (I) is the frequen-
cy domain of the input image. ∗ represents the convolution of
F and T .

B. Estimating the slant angle of the input texture image

Fig.4 shows the intensity images under different slant angles
and same azimuth angle (azimuth=0◦) of the rock texture. We
can see the intensity of the image at 0◦ slant angle is uniform
and have no obvious shadow. With the gradual increase of slant
angle, the structure of the texture image will not change, but
the intensity contrast (mainly caused by shadow) will appear
huge changes. Hence we can observe that the slant angle is
related with the distribution of shadow. Therefore the intensity
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Fig. 4. Intensity images under different slant angle (From left to right, from
top to bottom, the slant angle is 0◦, 10◦,. . . , 70◦ respectively).

distribution, such as image histogram, can be used to estimate
the slant angle of the input texture image.

In order to accurately estimate the slant angle of an input
texture image, we generate a random height map controlled
by density parameter σ. The density parameter can control
the change rate of the height map. If σ is small, the change
of height map is dramatic. If σ is big, the change of height
map is gentle.

By changing σ and slant angle of the light source, we can
obtain several generated images, which have different slant
angle with the input image. By searching the most similar
generated image with the input image, the slant angle can be
estimated. The slant angle estimation algorithm is described
as follows:

Initializationinitial density parameters (σ) of the random
height map; Input: a texture image I

(1)Generate the height map (TI) controlled by σand esti-
mate the slant angle of I by using equation (6).

slant = {θ, |similarmax(I, T I(θ)), θ = 0◦, 5◦, 10◦, . . . , 70◦}
(6)

where similar(I, T I(θ)) is the similarity measure functionby
computing the maximum similarity of I and TI in different
slant angles to estimate the slant angle of input texture image.
Because of the slant angle greater than 70 degrees will cause
obvious cast shadows, so we only consider of within 0 to 70
degrees in this paper. The function of similar(I, T I(θ)) is
defined as follows:

simlar(θ) = λ1S1(I, T I(θ)) + λ2S2(I, T I(θ)) (7)

where S1(I, T I(θ)) represents the local similarity (the gray
value of image block is used in our algorithm) between I
and TI; S2(I, T I(θ)) represents the global similarity (image
histogram is used in our algorithm) between I and TI; λ1 and
λ2 represents the weight of S1 and S2 respectively.

(2)By using the estimated slant of (1) to get TI(slant), we
can change parameter σ to generate TI(slant, σ) . Where σ
is changed in two direction of positive and negative (σnew =
σ±0.1n), n = 1, 2, · · · , N , N represents the maximum range
of σ. When the function of similarity in equation (8) obtains
the maximum value, we can obtain the local optimal value of
σ.

similarmax(δ) = λ1S1(I, T I(slant, δ))

+λ2S2(I, T I(slant, δ))
(8)

(3)If similarity function no longer changes or the maximum
number of iteration is reached, then stop; Otherwise, go to (1).

Output: the slant angle:θ ; the density parameter: σ.

IV. EXPERIMENTS AND ANALYSIS

In order to verify the effectiveness of the proposed scheme,
the lighting directions (the azimuth and slant angle) for 24
different kinds of texture images in Photex Database are used
to evaluate the performance of our proposed framework. The
azimuth angle includes 0, 30, 50, 60, 80, 90, 110, 120, 140,
150 and the slant angle is 30, 45, 60 degree. In total, there are
142 texture images with different lighting directions, which
include some surface consistency textures and inconsistency
textures, have been tested and estimated in our experiments.

A. Estimating the azimuth angle of an input texture image

We firstly classify the 24 kinds of texture images to five
classes, denoted by A, B, C, D and E. We select one typical
image from each class to show the estimated results. The
image in first column of Table 1 is the texture of 0 azimuth
degree and with the same slant angle, and the words under the
image describe its category and name. The second column in
Table 1 is the ground truth (G.T.) azimuth angle of the input
image. The third column in Table 1 is the estimated azimuth
using our method. The last column shows the estimated error
between G.T. azimuth and Estimated azimuth. From the last
column we can see that the estimated results of class A, C
and E is more accurate than that of class B and D.

Since this paper focus on considering the uniform texture
image, the estimated error is big for class B and D. It is mainly
because the texture images of class B and D have obvious
texture direction. The texture direction seriously affects the
estimation of azimuth angle, which is our future work.

B. Estimating the slant angle of an input texture image

For further verifying the effectiveness of our algorithm for
slant angle estimation, the 24 kinds of texture images in Photex
database had been tested. Table 2 shows the estimated results
for 24 kinds of texture images. The words in first column, for
example ”aab45-0” represent the image ”aab” at slant angle of
45 degree and azimuth angle of 0 degree. As shown in Table 2,
our algorithm can produce promising and satisfactory results.

From Table 2, we can find that the error of the proposed
slant angle estimation algorithm is small for different kinds
of texture image, excluding three kind of texture ”ach”, ”aci”
and ”acj”. The main reason is that the surface texture of ”ach”,
”aci” and ”acj” is almost completely black, and most of the
reflected light is absorbed in the surface of the black region.
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TABLE I
THE ESTIMATED AZIMUTH ANGLE FOR FIVE TYPICAL KINDS

OF TEXTURE IMAGES

Num G.T.azimuth Estimated azimuth Azimuth error

A: aab

0◦ 0◦ 0◦
50◦ 45◦ 5◦
90◦ 85◦ 5◦
110◦ 105◦ 5◦
140◦ 145◦ 5◦
170◦ 170◦ 0◦

B: aba

0◦ 20◦ 20◦
30◦ 15◦ 15◦
60◦ 25◦ 35◦
90◦ 55◦ 35◦

150◦ 170◦ 20◦

C: acd

0◦ 5◦ 5◦
30◦ 25◦ 5◦
60◦ 55◦ 5◦
90◦ 85◦ 5◦
120◦ 120◦ 0◦

D: acf

0◦ 0◦ 0◦
30◦ 10◦ 20◦
90◦ 90◦ 0◦
120◦ 105◦ 15◦
150◦ 170◦ 20◦

E: ach

0◦ 0◦ 0◦
30◦ 25◦ 5◦
60◦ 55◦ 5◦
90◦ 90◦ 0◦
120◦ 120◦ 0◦
150◦ 155◦ 5◦

TABLE II
THE ESTIMATED SLANT ANGLE FOR 24 KINDS OF TEXTURE

IMAGES

Num Estimated slant Error σ
aab45-0 50◦ 5◦ 0.4
aaf45-0 50◦ 5◦ 0.7
aai45-0 45◦ 0◦ 0.7
aaj45-0 50◦ 5◦ 0.3
aam45-0 55◦ 10◦ 0.4
aan45-0 50◦ 5◦ 0.5
aao45-0 55◦ 10◦ 0.8
aap45-0 55◦ 10◦ 0.6
aar45-0 50◦ 5◦ 0.9
aas45-0 45◦ 0◦ 1.0
aba45-0 45◦ 0◦ 1.0
abj45-0 55◦ 5◦ 1.1

abk45-60 50◦ 10◦ 0.8
acc45-0 55◦ 5◦ 0.6
acd60-0 60◦ 0◦ 1.1
ace45-0 60◦ 15◦ 1.0
acf60-0 55◦ 5◦ 0.9
acg60-0 55◦ 5◦ 1.0
ach60-0 70◦ 10◦ 1.2
aci30-0 65◦ 35◦ 0.2
acj45-0 70◦ 25◦ 0.7
ack60-0 60◦ 0◦ 0.1
ada45-0 55◦ 5◦ 0.6
adb45-0 60◦ 15◦ 0.7

V. CONCLUSION

In this paper, we have presented a simple method for estima-
tion of lighting directions for the uniform texture images. The
proposed algorithm can estimate the light parameters for the
parallel light in the vertical viewing angle. Through estimating
the lighting direction of the texture image in Photex database,
experimental results show that our method is effective for
estimating azimuth angle and slant angle of the uniform texture
images.
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