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Abstract—In recent years, much research interest has devel-
oped in image smoothing techniques. With increasing application
in various fields, there is a motivation to explore various modes
of algorithm implementation of image smoothing. Recently, edge-
aware image smoothing techniques have been developed based on
fast Fourier transformation methods. In this paper, we present
an alternative implementation for an existing image smoothing
algorithm using spatial iterative methods. The motivation of
this is to create a performance baseline using spatial iterative
methods such as multigrid (MG), conjugate gradient (CG), and
preconditioned conjugate gradient (PCG) methods, for the purpose
that the algorithm can be easily adapted to parallel computing
systems. We also determine the competitiveness compared with
FFT implementation in terms of computational cost. From ex-
perimental results, multigrid preconditioned conjugate gradient
(MGCG) method provides superior results both in smoothing
quality and computational cost compared to all the spatial iter-
ative methods considered. Furthermore, with relaxed tolerance,
it demonstrates lower computational complexity compared with
FFT implementation, with similar smoothing results but having
minor quality compromise. Hence, MGCG provides a relatively
competitive spatial domain alternative to frequency domain
solver, FFT. In applications which do not require computation
of an exact solution, spatial iterative methods can provide a
reasonable computation alternative to FFT implementation as
their convergence conditions can easily be altered by the user
to fit a specific application, as well as possessing the ease for
parallel computing adaptation.

I. INTRODUCTION

In recent years, great emphasis has been placed on the
development of least computational costly image smoothing
algorithms, possessing edge-aware qualities. Presently, with
the advent of high processing power machines, processing time
will soon become the least of concern for image smoothing
technique developers. On the other hand, massively parallel
computing systems have been developed, which has lead to
gained interest in spatial iterative methods [1].

An edge-aware/preserving image smoothing algorithm ba-
sically limits fine details while maintaining the structural
integrity of the overall image i.e. returning the fidelity of the
edges. Edge preserving can be achieved via several techniques
including energy-minimization, surface fitting, and weighted
averaging [2]. According to [3, 4], edge-aware smoothing
is a fundamental building block for several applications. As
illustrated in [2, 5]–[7], some of these applications are in
detail enhancement, high dynamic range (HDR) tone map-

ping, edge enhancement and extraction, image abstraction
and pencil sketching, clip-art compression artifact removal,
noise removal, and layer-based contrast manipulation, just to
highlight a few. According to [8], smoothing can be combined
with segmentation techniques in order to produce superior
segmentation results.

Image smoothing involves solving a formulation of a Pois-
son equation. An FFT solver strives to solve an exact solu-
tion, and furthermore can be considered as a black box [1].
However, iterative methods offer more user control flexibility
as they can be stopped at any point even before reaching an
exact solution, once the pre-specified convergence criteria are
achieved. In light of this, even though iterative methods may
generally suffer from higher computational cost as compared
to FFT solvers, they may find use in applications which
may not require the calculation of an exact solution, or
favor iterative methods to FFT for ease of parallel computing
adaptation based on a specific hardware application.

Having performed a computational cost breakdown of [6]
in [9], we also desire to investigate how competitive iterative
methods are to the existing FFT implementation. As such, by
our work we seek to create a baseline for future works on the
comparative pros and cons of iterative method implementation
to FFT, in image smoothing.

In this paper, we demonstrate the implementation of image
smoothing based on [6] using iterative methods. The algorithm
can be represented in two parts: (1) calculation of the shrink-
age operation based on [6], (2) implementation of smoothing
(solving screened Poisson equation) using iterative methods.

This paper is organized as follows. In Section II, we present
the formulation of the problem to be solved iteratively. In
Section III, we present the experimental results and analysis.
Finally in Section IV, we conclude this paper.

II. PROBLEM FORMULATION

Given that a smoothing problem can be represented by two
procedures [6],

v(k+1) ← argmin
v

ψ(v) +
β

2

∥∥∥∇u(k) − v∥∥∥2
2
, (1)

u(k+1) ← argmin
u

λ ‖u− g‖22 + β
∥∥∥∇u− v(k+1)

∥∥∥2
2
,(2)

where g is input image, u is the desired smoothed output,
∇u is the gradient of u, ψ(v) is a model function, and v is a

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 779 APSIPA ASC 2015



gradient field. Equation 1 corresponds to a shrinkage operation
while Eq. 2 corresponds to the screened Poisson equation [10].

We are interested in solving the screened Poisson equation
using iterative methods. Sparse iterative linear solvers are used
to solve linear problems of the form of Ax = b. Hence, it is
first required to formulate the screened Poisson equation into
the form of Ax = b.

The minimization problem expressed by the screened Pois-
son equation can be likened to minimizing a quadratic func-
tion, with the solution u occurring at minimum point (zero
gradient location). Henceforth, for simplicity of manipulation,
we can represent the screened Poisson equation as:

L = λ ‖u− g‖22 + β ‖∇u− v‖22 . (3)

According to [10], the equation above can be simplified into

L = λ (u− g)2 + β
(
(ux − vx)2 + (uy − vy)2

)2
. (4)

Deriving the derivative of the equation above, based on the
satisfaction of the Euler-Lagrange equation, and equating to
zero yields,

λu− β(uxx + uyy) = λg − β(vxx + vyy), (5)

which can be further simplified into,

(λI − β∇2)u = −β∇.v + λg, (6)

where ∇2 is the discrete Laplacian and I is an identity matrix.
Note the equation above is basically a representation of the

form of Ax = b, with:

A = λI − β∇2, (7)
x = u, (8)
b = −β∇.v + λg. (9)

In order to solve Eq. 6 using iterative methods, it is required
to only have one unknown variable, which in this case is the
desired smoothed output u. Note that λ and β are user defined
scalar smoothing parameters,∇2 is a known parameter (simply
modeled after a 5 point discrete Laplacian kernel), and g is the
known input image. In order to solve Ax = b, b is required
to be a known parameter. Hence to have it so, the gradient
field v in Eq. 6 has to be calculated first by Eq. 1 before
we can proceed with iterative method implementation. This is
calculated based on accelerated shrinkage operation presented
in [6]. In summary, our proposed algorithm is given in Alg. 1.

As we are dealing with spatial iterative methods, the pa-
rameter common to all is ε. This parameter is a convergence
condition which determines the accuracy of the method.

III. RESULTS AND ANALYSIS

All experiments shown in this section were performed on
Intel Core i7 CPU @3.4 MHz, and the implementation was
done in MATLAB R2013a. We solved Eq. 6 using multigrid
method and conjugate gradient method (with their precondi-
tioned variants) in the following subsections, as they present
superior processing attributes when dealing with very large
number of unknowns as opposed to other iterative methods

Algorithm 1 Proposed Smoothing Implementation

Data: Input image g, parameters λ, β and convergence
stopping criteria ε.
Result: Smoothed image u.
Step 1: Calculate gradient field v, use it to compute b =
−β∇.v + λg and store.
Step 2: Calculate A = λI − β∇2 and store it.
Step 3:
while (!convergence) do

Solve Ax = b using iterative method.
end while
Solution u = x
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Fig. 1: Result of algebraic multigrid method (AMG). Resolu-
tion vs processing time.

such as Jacobi or Gauss-Seidel methods. Refer to Alg. 1, in
order to clearly identify where these iterative methods were
applied.

A. Algebraic Multigrid

Algebraic multigrid method (AMG) is a general form of
multigrid, which solely derives required information from the
coefficient matrix A, as opposed to geometric multigrid. We
present experimental results based on v-cycle implementa-
tion for both non-preconditioned and preconditioned algebraic
multigrid.

To solve Eq. 6, various parameter tweaks were applied.
These were variation of convergence stopping criterion re-
ferred as tolerance, optimization of grid number and applica-
tion of a preconditioner. Smoothing parameters β and λ were
set experimentally to 1 and 0.02, respectively.

Figure 1 shows a result obtained with a tolerance of
ε = 10−6, for various input image resolutions for both
preconditioned and non-preconditioned AMG. By introducing
a preconditioner, which in this case was CG method, it can
be observed that the convergence time is improved from
179 sec to 130 sec for a full HD image. This is due to the
fact that introducing a preconditioner basically improves the
condition number of the coefficient matrix A in Eq. 6, thereby
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TABLE I: Preconditioned AMG coarsening level vs processing
time (tolerance: ε = 10−6, image size: 256×256).

Coarsest Number of grids Processing time (sec)
128×128 2 1.78
64×64 3 1.26
32×32 4 0.76
16×16 5 0.69

8×8 6 0.66
4×4 7 0.66
2×2 8 0.66
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Fig. 2: AMG: Tolerance vs processing time.

causing the eigenvalues to cluster around 1 and hence resulting
in a relatively well-conditioned problem. A well-conditioned
problem converges faster than an ill-conditioned problem.

As we are dealing with a multigrid method, for further
optimization we ran test to determine the optimal number of
grids necessary to ensure efficient and fast processing. Our
test image was a 256×256 RGB image. Table I illustrates the
optimal number of grids and the associated processing time.
From this, we notice that only 6 grids are necessary with an
optimal processing time of 0.66 sec. For various resolutions,
the required number of grids was generally the same with
minor deviation, with the general optimal number determined
to be 6.

In most image smoothing applications, in which minor
details are not a priority but the fidelity of the edges, we
can relax the tolerance condition in a bid to further optimize
this iterative method. Figure 2 depict the effect of tolerance
on convergence rate. With λ = 0.02, it was noted that
over-relaxed tolerance levels of 10−2 and 10−1 impacted the
smoothing quality of higher resolution input images (i.e. from
about 1.7 megapixels upwards) more than it did for lower
resolution images. By changing the value of λ to 0.01, the
smoothing quality in the case for high resolution images was
greatly improved at such relaxed tolerance values.

TABLE II: Optimized AMG for smoothing application

Resolution Non-optimized Optimized
(Mpixel) (sec) (sec)

0.05 1.8 0.45
0.21 9.0 1.62
0.50 22.5 4.02
0.70 39.6 5.55
1.02 64.8 8.22
1.92 142.3 15.88
2.07 185.7 17.18

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.0 0.5 1.0 1.5 2.0

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e
c
)

Resolution (M pixel)

ε=10
-6

ε=10
-5

ε=10
-4

ε=10
-3

ε=10
-2

ε=10
-1

Fig. 3: Result of conjugate gradient method (CG). Resolution
vs time.

Finally by a combined optimization of the three parame-
ters described previously within this subsection, we obtained
results given in Table II. Clearly, convergence rate is greatly
improved, achieving smoothing within 17.18 sec as opposed to
the initial 185.7 sec when considering a color full HD image
(1920×1080). Hence, convergence within 17.18 sec is what
is the general computation expectation when we implement
image smoothing using multigrid method.

B. Conjugate Gradient Method

Conjugate gradient method (CG) is a Krylov space iterative
method. There are many variants, some of which are applica-
tion specific. We performed image smoothing (solving Eq. 6)
using conjugate gradient method (CG), incomplete Cholesky
factorization preconditioned conjugate gradient (ICCG), and
multigrid preconditioned conjugate gradient method (MGCG).
The smoothing parameters were set to λ = 0.02 and β = 1.

Figure 3 shows the performance of non-preconditioned
conjugate gradient method for various resolutions and toler-
ance values. As can be noted from this result, computational
performance of conjugate gradient method even under strict
tolerance criterion is superior to that of multigrid method.
For 1920×1080 resolution image smoothing, a tolerance of
ε = 10−3 was sufficient to obtain a reasonably good smooth-
ing quality result within 9 sec. Further we introduced precon-
ditioning by applying incomplete Cholesky factorization (IC)
and multigrid (MG), independently. It should be noted that
the complexity of computing and applying a preconditioner is
vital in the selection of a preconditioner as this also affects
the overall processing time. Hence, applying a highly robust
but very complex preconditioner would defeat the purpose of
preconditioning to reduce the overall computation time.

Figure 4 shows the performance when IC factorization of
coefficient matrix A (in Eq. 6) is used as a preconditioner.
As expected of preconditioning, there was a computation time
improvement compared to the non-preconditioned conjugate
gradient method resulting in time reduction from 17.1 to

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 781 APSIPA ASC 2015



0

1

2

3

4

5

6

7

8

9

0.0 0.5 1.0 1.5 2.0

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e
c
)

Resolution (M pixel)

ε=10
-6

ε=10
-5

ε=10
-4

ε=10
-3

ε=10
-2

ε=10
-1

Fig. 4: Result of incomplete Cholesky factorization precon-
ditioned conjugate gradient method (ICCG). Resolution vs
processing time.
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Fig. 5: Result of multigrid preconditioned conjugate gradient
method (MGCG). Resolution vs processing time.

8.8 secs for a full HD image with ε = 10−6. In this case
of ICCG, computing an incomplete Cholesky preconditioner
proved to be reasonable both in terms of computation and
storage (intrinsically). This is so due to the fact that this pre-
conditioner is very sparse (as coefficient matrix A is sparse),
while also being easier to apply than A as the computation
of its inverse is easier. From Fig. 4, it is shown that IC
factorization preconditioning effectively improved the overall
processing performance of CG method.

In the case of applying multigrid as a preconditioner, the
computation performance results for various image resolutions
and at different tolerance are shown in Fig. 5. Smoothing
convergence occurred within 4.4 sec for a full HD image with
ε = 10−6. In MGCG, multigrid method as a preconditioner
basically aids the removal of low frequency errors (“smooth
error”) on the problem grid (actual problem size) by means of
relatively converting them into high frequency errors (“rough
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Fig. 6: Performance comparison of iterative methods consid-
ered in this paper as well as the existing FFT implementation.

error”) on a coarse grid, which can then be easily removed.
Hence, multigrid preconditioner relaxes the problem being
solved iteratively by CG, thereby leading to faster convergence
rate. Applying multigrid as a preconditioner is computationally
reasonable as the error removal computation is performed on
a smaller (coarse grid) problem size.

From this, MGCG provided the best computational perfor-
mance results compared with the other spatial iterative solvers
considered in this paper. Generally, concerning spatial iterative
methods investigated in this paper, it is noted that the trade-
off between processing time and output quality is greatly
influenced by the value of ε. Hence, a strict ε (e.g. ε = 10−6)
provide better smoothing quality but at a higher processing
time compared with more relaxed ε (e.g. ε = 10−2).

C. Performance Comparison

Even though our main objective is to present a spatial
iterative solver approach to an existing image smoothing
algorithm thereby also providing a performance baseline, it
is also necessary to compare the overall performance for such
iterative methods to the existing FFT solver approach.

Figure 6 illustrates the computation cost of both iterative
and FFT solvers. For the spatial iterative solvers, the outlined
results were taken at tolerance of ε = 10−3, yielding accept-
ably good smoothing quality results. It can be noted that FFT
and MGCG at the above specified tolerance (ε does not apply
to FFT) were very close in computational performance, with
FFT slightly performing faster than MGCG under the specified
tolerance. Furthermore, by setting λ = 0.01 and relaxing the
convergence tolerance, MGCG converged within 3.2 sec at a
tolerance of ε = 10−2, with FFT converging within 3.1 sec.
Further tolerance relaxing leads to MGCG converging within
2.8 sec, while FFT still in 3.1 sec. Figure 7 (a), (b), and (c)
shows the input image, and smoothing results using relaxed
MGCG and FFT solver, respectively. We evaluated the quality
difference between the two methods using PSNR, yielding
48.29 dB in the case of Fig. 7. By this, we can loosely say that
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(a) Input.

(b) Relaxed MGCG smoothed output.

(c) FFT smoothed output.

Fig. 7: Image smoothing retults. The input image is obtained
from publicdomainpictures.net (image 8363).

MGCG performed faster while maintaining reasonably good
smoothing quality performance compared to the existing FFT
solver implementation.

IV. CONCLUSION

In conclusion, it has been successfully demonstrated that
image smoothing can be implemented using spatial itera-
tive methods, while also comparing the performance of the
iterative methods considered in this paper with each other
as well as with the existing FFT implementation. Spatial
iterative methods have been proven that they can also serve
as good solvers in image smoothing applications, especially
in cases where relaxed convergence conditions are sufficient.
We have also provided a performance comparison for iterative
methods, clearly depicting that MGCG provides the best
computational performance results among all the other spatial
iterative methods considered in this paper for the purpose of
image smoothing. When compared to FFT, under moderate
convergence conditions, MGCG performed slightly slower
within 3.4 sec compared to FFT which converged within
3.1 sec. Nonetheless, by relaxing the convergence criteria
for MGCG, it converged within 2.8 sec. Hence, the iterative
method provided lower computational complexity with some
quality compromise. In addition, iterative solvers provide users
greater degree of flexibility, as various components which af-
fect processing time can be tweaked to achieve an application
specific desired outcome.
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