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Abstract— In this paper, a method is suggested for the anomaly
detection in wireless networks. The main problem that is ad-
dressed is to detect the malfunctioning sub-graphs in the network
which bring about anomalies with block sparse structure. The
proposed algorithm is detecting the anomalies considering the
low-rank property of the data matrix and the block-sparsity of
the outlier. Hence, the problem boils down to a compressed block
sparse plus low rank decomposition that is solved with the aid of
the ADMM technique. The simulation results indicate that the
suggested method surpasses the other technique especially for
higher block-sparsity rates.

Index Terms—Compressed Sensing, Low rank minimization,
Anomaly detection.

I. INTRODUCTION

Anomalies may occur in the networks due to the hackers,
node or link failures which would deteriorate the throughput
of the network. Hence, the anomaly detection is essential
to guarantee the acceptable performance of the networks.
Different anomaly detection schemes have been suggested
in the literature [1]. The statistical techniques include
wavelet analysis [2], covariance matrix analysis [3], principle
component analysis [4] and Kalman filtering [5]. Some
discrete algorithms such as heavy hitter detection and heavy
change detection have also been suggested for the anomaly
detection problem. Another group of the techniques are
based on machine learning schemes. Adaptive learning and
thresholding scheme and clustering based method are the
examples of such techniques. The most recent anomaly
detection techniques are leveraging some properties of
the signal such as sparsity and low-rank. A signal is said
to be sparse if it has a very few number of non-zero
entries. Most of the communicational and natural signals
possess some kind of the sparsity property which is widely
utilized in various applications [6]–[8]. A low-rank signal
has very few number of non-zero singular values. This
property can also play an important role in solving different
problems ranging from image/video processing [9] to wireless
communications and biomedical engineering [10]. Sparse
coding for anomaly detection has been suggested in [11].
In [12], the robust matrix factorization has been exploited
to detect the anomalies. Sparse approximation theory has
been used in [13] for anomaly detection in smart grids. The
low rank sparse decomposition is addressed in [14]. In [15],
a reweighted low-rank and reweighted sparse technique is
suggested to decompose the sparse and low-rank components.

The proposed method in [16] solves the compressed low-rank
sparse problem by minimizing the convex relaxation of the
cost function. In this paper, the network anomaly detection
is modeled as the compressed low-rank and block sparse
decomposition. The application of this modeling is to detect
the mal-functioning sub-graphs in a wireless network. Since
some sub-graphs of the network are assumed to mal-function,
the corresponding outlier matrix would be block sparse. The
data matrix, however, is low rank since the data pattern
does not change too much over the time. An algorithm has
been suggested to recover the low rank data matrix from the
measurement matrix and eliminate the block sparse outlier.
The simulation results confirm that the proposed technique
outperforms the other anomaly detection techniques. The
superiority of the suggested technique becomes magnificent
when the block size (sub-graph size) increases. In such case,
the sparsity of the outlier matrix decreases which deteriorates
the efficiency of the sparsity-based techniques.

The rest of the paper is organized as follows: the proposed
modeling together with the suggested decomposition algorithm
are illustrated in Section II. The simulation results and relevant
discussions are given in Section III. Section IV concludes the
paper.

II. THE COMPRESSED LOW-RANK BLOCK SPARSE
DECOMPOSITION PROBLEM

Suppose that R is a routing matrix of size L × F , Z is a
clean traffic matrix of F × T and A is the outlier matrix of
the same size which includes the network anomalies. L, F ,
and T indicate for the number of links, flows, and time slots,
respectively. The measurement matrix Y can be modeled as
[16]:

Y =R(A+ Z) (1)
=RA+X

where X, which is the multiplication of the clean traffic matrix
and the routing matrix, is called the data matrix. The problem
to be solved here is to detect a number of mal-functioning
sub-graphs in a network. Hence, the outlier matrix A would
be block-sparse. The routing matrix is low-rank since there are
repeated traffic patterns over the time and flow. Hence, the data
matrix X would also be low-rank. In order to decompose the
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low-rank data and the block-sparse outlier matrix, we define
the following optimization problem.

min ∥X∥∗ + λ∥A∥2,1 (2)
s.t. Y = RA+X

Suppose that the matrix A consists of P blocks:

A = [A[1],A[2],A[3], · · · ,A[P ]] (3)

The mixed L1,2 norm can be calculated as:

∥A∥2,1 =

P∑
l=1

∥A[l]∥2 (4)

We apply the Alternating Direction Method of Multipliers
(ADMM) [17] to solve (2). Being multiplied by the matrix
R, the entries of A are coupled which renders the problem
more complicated. In order to address that issue, we introduce
an auxiliary variable B to the problem as:

min∥X∥∗ + λ∥A∥2,1 (5)
s.t. Y = RB+X

s.t. A = B

The quadratic augmented Lagrangian function would be ob-
tained as:

L(X,A,B,M,N) (6)

=∥X∥∗ + λ∥A∥2,1 + Tr(MT (Y −RB−X))

+Tr(NT (A−B)) + (c/2)∥A−B∥2F
+(c/2)∥Y −RB−X∥2F

The matrices X, A, and B are the primal variables, while M
and N are the dual matrices. The matrix X is updated as:

Xk =argminXL(X,A,B,M,N) (7)

=argminX∥X∥∗ +
c

2
∥X−Y +RB− M

c
∥2F

=D(Y −RB+
M

c
,
1

c
)

The function D(x, τ) is defined as follows:

D(x, τ) = U ∗ F (S, τ) ∗VT (8)

where the singular value decomposition of X is:

X = U ∗ S ∗VT (9)

and the shrinkage function F (x, τ) is defined as:

F (x, τ) =

{
x− τ if x > τ

x+ τ if x < −τ
(10)

The second primal variable A is updated as follows:

Ak =argminAL(X,A,B,M,N) (11)

=argminA∥A∥2,1 +
c

2λ
∥A−B+N/c∥2F

This problem can be decomposed as:

Ak = argminA

P∑
l=1

∥A[l]∥2 +
c

2λ
∥A[l]−B[l] +N[l]/c∥2F

(12)

In order to solve (12), we consider the point that the
cost function is convex and non-smooth. Hence, the optimal
solution is achieved when the sub-gradient equals zero. The
sub gradient of the L1,2 norm is derived in the following
lemma.

Lemma 1. For the function f(A) = ∥A∥2,1, the sub-gradient
is derived as:

∂

∂A[l]
f(A) =

{
[−1, 1] ∥A[l]∥2 = 0

A[l]
∥A[l]∥2

∥A[l]∥2 ̸= 0
(13)

Proof: This lemma can be proved using the definition of
the sub-gradient. The sub-gradient of the function f(x) in x0

is the vector ξ defined as [18]:

f(x) ≥ f(x0) + ξT (x− x0) (14)

Here, we have: f(A) = ∥A∥2,1 =
∑P

l=1 ∥A[l]∥2. For the
case of ∥A[l]∥2 ̸= 0, the function is smooth and differentiable,
so we get:

∂

∂A[l]
f(A) =

A[l]

∥A[l]∥2
(15)

For the case of ∥A[l]∥2 = 0, according to the definition of
sub-gradient, we have:

∥A[l]∥2 ≥ Tr(ξTA[l]) (16)

Then, we would have: |ξi,j | ≤ 1 which completes the proof.

The solution of (12) is characterized in the following
Theorem.

Theorem 1.1. The optimal solution of the optimization prob-
lem in (12) is characterized as:

A[l] = Th(Q[l](1− 1

ρ∥Q[l]∥2
), θ) (17)

where Q[l] = B[l]−N[l]/c , θ > ρ, ρ = λ/c, and Th(., θ) is
the thresholding function defined as:

Th(z[l], θ) =

{
0 ∥Q[l]∥2 ≤ θ

z[l] ∥Q[l]∥2 > θ
(18)

Proof: Let the function g(.) be defined as the cost
function in (II).

g(A[l]) = ∥A[l]∥2 +
ρ

2
∥A[l]−B[l] +N[l]/c∥2F (19)

The sub-gradient of the cost function is obtained as:

∂

∂A[l]
g(A) =


A[l]

∥A[l]∥2
+ (1/ρ)(A[l]−Q[l]) ∥Q[l]∥2 ̸= 0

τ + (1/ρ)(A[l]−Q[l]) ∥Q[l]∥2 = 0
(20)
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Setting the sub-gradient equal to zero, we would have:

A[l]=

Q[l](1− 1

ρ∥Q[l]∥2
) ∥Q[l]∥2 ̸= 0, (1/ρ)

Q[l]− τ/ρ ∥Q[l]∥2 = 0
(21)

∥Q[l]∥2 = 0 implies that Q[l] = 0. In order to have a more
stable algorithm, we introduce a thresholding operator as:

A[l] =

Q[l](1− 1

ρ∥Q[l]∥2
) ∥Q[l]∥2 ≥ θ

0 ∥Q[l]∥2 < θ
(22)

where we have selected τ = 0.
The last primal variable B is updated according to:

Bk = argminBL(X,A,B,M,N) (23)

=(RTR+ I)−1(RT (Y −Xk) +Ak + 1/cNk−1

+1/cRTMk−1)

The dual variables, M and N, are also straightforwardly
updated according to the ADMM technqiue. The proposed
algorithm for the solution of (2) is illustrated in Algorithm
1.

Algorithm 1 The proposed algorithm

1: input:
2: A routing matrix R ∈ Rm×n.
3: A measurement matrix Y ∈ Rm.
4: The maximum number of iterations itermax.
5: The number of blocks L.
6: The threshold value θ.
7: output:
8: The recovered matrix X̂ ∈ Rn of the original signal.
9: procedure THE PROPOSED ALGORITHM(y,x)

10: X0 ← 0
11: ϵ← 10−4

12: A0 ← 0
13: for k=1:itermax do
14: [U,S,V]← svd(Y −RBk−1 + (1/c)Mk−1)
15: Xk ← U ∗ F (S, 1/c) ∗VT

16:
17: for l=1:L do
18: Qk[l]← Bk[l]−Nk[l]/c

19: Ak[l]← Th(Qk[l](1− 1

ρ∥Qk[l]∥2
), θ)

20: end for
21: Bk ← (RTR + I)−1(RT (Y − Xk) + Ak +

1/cNk−1 + 1/cRTMk−1)
22: Nk ← Nk−1 + c(Ak −Bk)
23: Mk ←Mk−1 + c(Y −Xk −RBk)
24: end for
25: return X̂← Xitermax

26: end procedure

III. SIMULATION RESULTS

In this section, the simulation results are reported. The
dimensions are L = 105, F = 210, and T = 420. The block
sparsity of the matrix A which shows the percentage of mal-
functioning sub-graphs is s. The parameters of the proposed
algorithm are set as: itermax = 100, ρ = 0.1, θ = 20 and
λ = 1.5. The matrix R is a random binary matrix with 50%
ones. s percent of the blocks of A are selected randomly to
be non-zero. The entries of the non-zero blocks are generated
randomly according to N(0, 1). In the first scenario, the phase
transition diagram of the proposed method is depicted in
Figure 1. In this figure, the relative error of the recovered
signal matrix X, calculated as er = ∥X0 −X∥F /∥X0∥F , is
depicted for various values of rank r and block sparsity rate
s. The darker color indicates lower value of relative error and
better reconstruction region.

Fig. 1: The relative error of X0, er = ∥X0 −X∥F /∥X0∥F ,
for various values of r and s where L = 105, F = 210, and
T = 420.

expected, the performance of the algorithm is better for
lower rank and lower block sparsity rate. Hence, the upper
left corner of the figure represents for the lowest recovery
error and the lower right corner is related to the highest error.

The next scenario is to investigate the performance of the
method for various sizes of the matrix R. Different parameters
for assessing the recovery performance of the proposed method
for 3 values of L are given in Table I.

TABLE I: Recovery performance by varying the size of R for
r = 10 and s = 0.05

L ∥A0∥2,1 ∥Â∥2,1 ∥X0∥∗ ∥X̂∥∗ mse(A) mse(X)
F 728.74 727.48 4568 4567 5.9e-06 5.6e-05
F/2 742.75 687.35 3238 3148 2.2e-04 1.9e-04
F/4 735.99 488.91 2293 2214 3.0e-04 3.2e-04

According to this table, as the value of L increases, the
estimation of the rank of the nuclear norm of the data matrix
and the L1,2 norm of the outlier matrix becomes more accurate
and the estimation error of both the data matrix and the outlier
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matrix decreases. Hence, the algorithm behaves better as the
matrix R approaches the square form.

In order to have a comparison between the proposed method
and the algorithm in [16], we plot the relative error of the data
matrix X as well as that of the outlier matrix A versus block
sparsity in the Figures 2 and ??, respectively. The rank of the
data matrix is fixed to r = 11 in these cases.

Fig. 2: The relative error of X versus block sparsity for both
methods for r = 11, L = 210,F = 420, T = 512.

Fig. 3: The relative error of A versus block sparsity for both
methods for r = 11, L = 210,F = 420, T = 512.

As can be seen from these two figures, the proposed method
performs better than the other algorithm in terms of the
recovery error of both the data matrix and the outlier matrix.
Moreover, it is obvious from the two figures that increasing
the block sparsity, the relative error increases too.

IV. CONCLUSION

This paper discusses the anomaly detection in wireless
networks. The special kind of the anomaly considered in this
paper is related to the case that a sub-graph of the network is
mal-functioning. The proposed method detects such anomalies

and recovers the corresponding data. The point to be exploited
here is that the outlier matrix of the network graph would be
block-sparse, the corresponding blocks of the mal-functioning
sub-graphs would be non-zero, while the others would be
zero. The low-rank property of the data matrix and the block-
sparsity of the outlier matrix are leveraged to separate the
useful data from the noisy outliers.
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