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Abstract— This paper describes a method for automatically 

ranking a dictionary of swear words based on their level of 

rudeness. The final ranking is generated by combining two 

baseline rankings: 1) using the normalized accumulated cosine 

similarity between the word embeddings of the swear word 

and the n-best list of closest neighborhoods, and 2) using a 

pseudo-relevance feedback and bootstrapping algorithm. The 

proposed methods are trained using dialogues extracted from 

movies scripts and evaluated against a list of swear words 

ranked manually in 5 categories by four different annotators. 

The Spearman correlation coefficient between the rankings 

generated by the proposed system and a consolidated gold 

standard reaches a similar value to the ones obtained among 

the different human annotators, proving that the proposed 

method is a good alternative to the manual process. 

I. INTRODUCTION 

In recent years, the exponential grow in popularity of social 

media and networking sites like Facebook, Twitter, 

Youtube, Google+, etc. and, especially its popularity among 

child and youth people, has increased the effort of website 

administrators for detecting offensive language in order to 

block unpleasant, discriminatory or sexual comments that 

could hurt other users’ sensitiveness. A similar problem, but 

in a different application, is found in the context of chatbot 

and Q&A engines that are trained on human generated 

contents. In this scenario, it could happen that some of the 

dialogues or answers the system uses to learn could contain 

offensive language that can lately be displayed to the users 

as part of the machine generated answers. Therefore, it is 

important to develop automatic methods that could help to 

detect those contents in training data in order to allow 

system developers to remove or modify those sentences 

accordingly. 

One of the first things we need to define is the meaning of 

swear. In this paper, we have followed the adapted 

definition from [1] and [2], i.e. “it is any word or phrase that 

is likely to cause offense when used in middle class polite 

conversation”. As we can see, this definition can cover a lot 

of referents, for instance: religion, sexuality, ethnic groups 

or nationalities, political affiliations, denigration or 

oppression of groups of people, diseases or undesirable 

behaviors [2]. 

Unfortunately, accurately detecting offensive language is 

a difficult task since even the most basic approach (e.g. 

based on keyword matching techniques), requires of a list of 

swear words that could be difficult to create and update. 

Although there is not a standard available dictionary, sites 

like Wikipedia
1
, noswearing

2
, or youswear

3
 provide 

extensive list of words that can be used as starting point. 

However, the dictionary created from these kind of 

resources will have two main problems: (1) the words will 

not be classified according to their level or strength of 

rudeness, and (2) some of the included words can be 

considered as non-swear words depending on the context in 

which they are used due to factors like polysemy. In 

addition, we can mention other challenges to the 

classification of offensive language such as the following. 

(1) The lack of a large annotated corpus to train statistical 

systems. (2) Although swear words could have a recognized 

official spelling (e.g. given by the Oxford or Merriam-

Webster English Dictionaries), there could be national 

variations in spelling and pronunciation of similar words. 

Moreover, written swear words can be bleeped (i.e. 

replacing some letters by * or - symbols), or by introducing 

numbers, punctuations, or special symbols that could 

resemble known letters (e.g. @ instead of the letter a, 

$ instead of the letter s, 1 for letter l or i, etc.). Additionally, 

there could be accidental or deliberated misspellings that 

significantly deteriorate the performance of techniques 

based on keyword or rule matching even when using well 

known offensive patterns. (3) The  level of offensiveness of 

a sentence or swear word is very subjective and highly 

depends on several factors, such as the user's age, gender, 

background, vocabulary usage, the structure of the sentence, 

and the user’s intention, among others [3]. Finally, (4) the 

continuous evolution of the language and its usage make it 

difficult to keep the dictionary updated. For instance, a word 

that can be considered offensive at some point in time, after 

sometime can be considered as mild (in [4], it is shown that 

this is true except for some particular words that haven’t 

change along the time). 

 
1
https://en.wiktionary.org/wiki/Category:English_swear_wo

rds 
2
 http://www.noswearing.com/dictionary 

3
 http://www.youswear.com/index.asp?language=English 
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Despite of these problems, several attempts for 

addressing the problem of offensive language classification 

have been attempted in the past.  

For instance, one of the first commercial products was 

Smokey, which is described in [5]. This system included a 

parser for syntactic analysis and then a series of semantic-

rules applied before a C4.5 decision tree classifier used to 

categorize texts as offensive or not. In this system, the 

profanity, insults, polite and praise rules were based on the 

use of customized dictionaries of swear words.  

In [3], a multi-level classifier, boosted by a dictionary of 

insults and abuse words, is described. Here, the authors 

mention a dictionary with around 2700 words, phrases and 

expressions with different grades of rudeness labeled by 

hand in a 1-to-5 scale based on the potential impact of each 

entry on the classification of sentences. Unfortunately, this 

dictionary is not available online, but the amount of entries 

reflects an exhaustive amount of manual work that ideally 

should be made automatic.  

In [6], an automatic detector of cursing-related offensive 

content in Twitter is proposed. The algorithm uses an initial 

seed list of offensive words that is increased automatically 

using bootstrapping and topic distributions (LDA). The 

results show that this approach is suitable for detecting new 

offensive words, even foreign and misspelled swear words. 

As in our current work, the reason for attempting this kind 

of approaches is that vulgarity is a type of linguistic style, as 

pointed by [6], meaning that it is expressed within a 

sentence with a certain rhythm; therefore, it will be frequent 

to find more than one swear words together in a sentence 

(see [7]). This allows for the use of distributional semantic 

techniques for detecting additional words which carry 

similar levels of rudeness in similar sentences or contexts.  

Finally, in [8] an interesting classifier based on Lexical 

Syntactic Features (LSF) is proposed. This classifier is able 

to detect not only offensiveness at the sentence level, but 

also at the user level by using user profiles. The extracted 

features consider, among others: style, sentence structure, 

content, use of intensifiers, as well as the use of dictionaries 

with different levels of rudeness. 

From the point of view of the scope of this paper, we are 

not pursuing the creation of a classifier, as it was done in the 

above systems, but proposing an automatic solution to the 

problem of ranking the entries in a dictionary of swear 

words according to their degree of offensiveness and 

rudeness. Our motivation is to use this resource to help 

cleaning up training corpora in the context of example-

based chat engines [9]. The rest of the paper is organized as 

follows: in section II we describe the corpus of movie 

scripts used to extract, rank and classify the offensive 

words, as well as the seed dictionary of swear words we 

collected from different websites; then in section III, we 

describe the two proposed ranking approaches used to 

estimate the level of rudeness, which are based on (1) word 

embeddings and (2) Rocchio’s pseudo-relevance feedback 

algorithm. Finally, in section IV, we present our main 

conclusions and some future work. 

II. DATABASE DESCRIPTION 

For this work, we have used a refined version of the 

Movie-DiC corpus described in [10]. This corpus was 

extracted from movie scripts freely available from The 

Internet Movie Script Data Collection
4
. The creation process 

started by crawling this website and then identifying and 

extracting the relevant segments from the scripts. Three 

basic types of information elements were extracted from the 

scripts: speakers, utterances and context. The utterance and 

speaker information elements contain what is said at each 

dialogue turn and the corresponding movie character who 

says it, respectively. Context information elements, on the 

other hand, contain all additional information/texts 

appearing in the scripts, which are typically of narrative 

nature and explain what is happening in the scene. For 

detecting dialogue boundaries, some heuristics were 

implemented by taking into account the size and number of 

context elements between speaker turns. 

In order to prepare the data for our experiments on 

offensive language categorization, we applied additional 

post-processing steps following recommendations from [6], 

specifically those mentioned in steps 7 and 8 (simplification 

of intentional repetitions of letters), 9 (stop-words removal) 

and 10 (removal of words containing mixtures of letters 

with numbers and/or symbols). We also performed several 

normalizations such as contraction expansions (e.g. I'll for I 

will, don't for do not, ya' for you all), omission of letters 

(e.g. tryin' for trying), resolving misspellings (by using the 

Wikipedia dictionary of common misspellings
5
), as well as 

several regular expressions rules for normalizing 

punctuation. Finally, we used NLTK TreeBank-

WordTokenizer to obtain all words in a sentence [11].  

 

Statistics Value 

Total number of movies 615 

Total number of  dialogues 65,215 

Total number of  speaker turns 512,582 

Average amount of dialogues per movie 106.1 

Average amount of turns per movie 824.8 

Average amount of turns per dialogue 7.86 

Average length of words in a turn 13.7 

Total number of words 7,019,963 

Vocabulary size 79,525 

Number of different swear words found 1723 

Average number of swear words found 

together in the same sentence 

1.44 ± 0.92 

Average number of swear words per 

sentence 

0.19 

Maximum number of swear words found in 

a sentence 

27 

TABLE 1. MAIN STATISTICS OF THE COLLECTED MOVIE DIALOGUE 

DATASET 

 
4 
http://www.imsdb.com/ 

5
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common

_misspellings 
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Another important resource required for our proposed 

methods is a seed dictionary of swear words. For this, we 

collected all the words in the sites mentioned in the 

introduction (i.e. Wikipedia, noswearing and youswear), 

plus some few other sites, obtaining a total of 5845 words. 

In the generated dictionary, most of the entries are single 

words (i.e. 4587) while the rest were phrases. On the other 

hand, we found that the total number of swear words in this 

dictionary that also occur in the movie script data collection 

was 1723. From this list of words, we extracted the 75 

highest frequent swear words with different levels of 

rudeness. The selection included 52 of the words mentioned 

in Table 6 from [2], and some others that were more 

frequent in our considered dataset. Then, we asked 4 

researchers from our lab to classify those words in the same 

5 different categories used in [2], i.e: very strong, strong, 

moderate, mild, and very mild. 

III. PROPOSED METHODOLOGIES 

In this section, we explain the two methodologies used to 

rank the list of the 75 selected swear words. The first 

methodology is based on the use of Rocchio’s pseudo-

relevance feedback [12] and bootstrapping [13]. The second 

method is based on the use of word embeddings trained 

using deep neural networks as proposed in [14]. 

A. Creation of the ranking using pseudo-relevance 

feedback and bootstrapping 

One of the motivations for using bootstrapping in this 

method was to follow a similar approach to [6] but by 

replacing the LDA topic models with Rocchio’s Pseudo-

Relevance Feedback algorithm. Up to the best of our 

knowledge, this is the first time these two algorithms are 

combined for this task. In addition, we also implemented a 

weighting mechanism that improved the results. The 

procedure for ranking in the list of words into the five 

categories mentioned in section II is as follow: 

1. We generated a binary word-document matrix
6
 for all 

terms appearing more than twice in all turns in the 

dataset. The resulting matrix was of size ~ 40K x 500K.  

2. Then, we ranked the columns of the matrix, which 

corresponds to the whole set of turns (~500K), based on 

the number of occurrences of swear words that appear 

in the seed dictionary of swear words we described in 

section II.  

3. Next, we created two vectors. The first one corresponds 

to the weighted sum of the top 10K binary vectors in 

the ranked list of turns. For this, we applied a 

decreasing continuous weight (wm in equation 1). The 

second vector corresponds to the weighted sum of the 

last 300K vectors in the ranking. In this case, we 

applied an increasing continuous weight (w’m in 

equation 1). In Equation 1, M stands for the total 

number turns in the movie scripts.  

 
6 In our experiments we also evaluated a TF-IDF matrix, but the results 
were slightly worst. Therefore we finally used the binary matrix. 

𝑤𝑚 =
𝑀 − 𝑚

𝑀
, 𝑤𝑚

′ =
𝑚

𝑀
 (1) 

 

4. Finally, we subtracted the two previous vectors and 

retained the N words with the highest weights. These N 

words were then used to update the original seed 

dictionary of swear words after each iteration. Eq. (2) 

shows the formula used for getting the final vector 

containing ranking of words; here, V stands for the total 

number of words in the vocabulary, K the total number 

of turns from the top of the turn ranking, and L the total 

number of turns from the bottom; wk and w’l are the 

corresponding weighting factors, and h is the original 

binary term-document matrix and h’ is the same matrix 

with the order of columns inverted.
7
 

 

𝐻𝑣
𝑓𝑖𝑛𝑎𝑙

= ∑ ∑ 𝑤𝑘 ∗ ℎ𝑘𝑣

𝑉

𝑣=0

𝐾

𝑘=0

− ∑ ∑ wl
′

𝑉

𝑣=0

∗ hlv
′

𝐿

𝑙=0

 (2) 

 

The four-step process described above is repeated several 

times, and after each iteration the new updated list of swear 

words is used.  

B. Creation of the ranking using word embeddings 

In [2] it is mentioned that the strength of swearing varies 

depending on the percentage of people that would take 

offense at a particular usage. Measuring directly such a 

percentage will require a huge corpus of annotated 

sentences that is not publicly available. Therefore, in order 

to alleviate this problem, we propose an automatic 

procedure based on the use of word embeddings, which are 

created by using neural networks and trained from texts 

extracted from different domains. In [14] it is shown that 

these word embeddings are able to capture lexical-semantic 

information thanks to the incorporation of contextual 

information during the training stage. These embeddings are 

typically of lower dimensions than the original data space, 

so well known metrics such as the cosine or Euclidean 

distance can be used to measure the level of relationship 

between terms. Clearly, these embeddings present 

interesting properties that have been exploited in different 

tasks like machine translation [15], Q&A [16], information 

retrieval [17], or selection of distractor candidates for 

automatic evaluation of students [18]. On the other hand, it 

is important to mention that it has been found in many 

studies that the quality of these embeddings highly depends 

on (a) the amount of training data, (b) the tuning of several 

parameters (e.g. size of the embedding, window size, 

number of negative examples, minimum number of 

occurrences, number of classes, etc.), and (c) the number of 

times and contexts in which each word appears.  

Taking into account the advantages of the embeddings, 

and that through them it would be possible to detect similar 

swear words occurring in similar contexts, we hypothesize 

 
7 This formula is expressed in a general form so it can be used with a TF-

IDF matrix or with our binary matrix. In addition K and L can be set to M 
to account for a continuous weighting scheme. 
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that it would be possible to measure the level of rudeness of 

a word based on the number and distances to similar words 

in the embeddings that are also swear words. Here, we 

propose to use a normalized accumulated distance (𝑤𝑟̅̅̅̅ ) 

between all words in the vocabulary and the list of swear 

words found among the K-Nearest Neighbors. For 

identifying the nearest neighbors we use the cosine distance 

between the vectors in the embedding as shown in equation 

3. Based on this accumulated distance, we generate the final 

ranked list of words. 

 

𝑤𝑟 = ∑ 𝑐𝑜𝑠(𝑤, 𝑤𝑘), 𝑏𝑒𝑖𝑛𝑔 𝑤𝑟̅̅̅̅ =
1

𝑚𝑎𝑥 (𝑤𝑟)

𝐾

𝑘=0

 (3) 

 

In this work, we used two different kinds of word 

embeddings. (1) A publicly available word embedding 

trained on part of Google News dataset (containing ~100 

billion words) of text data extracted from news
8
. This model 

contains 300-dimensional vectors for around 3 million 

words and phrases. (2) Word embeddings trained using the 

full text of dialogue turns in the movie script dataset under 

consideration. Since the amount of data in the last case is 

significantly lower than in the first case, the dimension of 

these embeddings was set to 150 to avoid that some of the 

embedding dimensions could not be well trained due to data 

scarceness. Finally, in both cases the embedding were 

obtained using the skip-gram method. The motivation for 

using both embeddings is to account for domain 

independent and domain dependent information, which 

considers general and specific usage frequency of each 

word, minimizing some of the problems with the 

embeddings mentioned before. In this way, the general 

embedding from Google news can provide coverage, while 

the movie's embedding will provide domain specificity. 

Unfortunately, for our proposed task, it is not possible to 

avoid the problem that the Google’s embedding was 

extracted from news, where many swear words (especially 

stronger ones) might not occur at all or only appear few 

times. Therefore, the resulting nearest neighbors will be 

unrelated or common words. On the other hand, our domain 

specific embeddings will face a data scarcity problem, since 

more training data is required in order to properly model 

swear word contexts (i.e. take into account that in our data 

only around 6.5% of the sentences were found to have at 

least one swear word). 

The procedure to combine both embedding is as follow: 

1. For each word in the vocabulary, we extracted the K-

Nearest Neighbors and their cosine distance using first 

the embedding from Google and then from our 

database. 

2. Then, for each word we calculated the cumulative 

cosine distance considering only the distance of those 

neighbors that were swear words according to our full 

dictionary. Since the combination of both kind of 

 
8
 Available at https://code.google.com/p/word2vec/ 

embedding is done at the cosine distances, the 

differences in the sizes of the embedding do not pose a 

problem. 

3. Then, only the known swear words are extracted and a 

new rank is created based their normalized cosine 

distance. 

4. Optionally, it is possible to extract new unknown swear 

words by considering as candidates words obtaining 

high cumulative values, or by considering words that 

appear frequently as neighbors of well known swear 

words. 

IV. EXPERIMENTS AND RESULTS 

In order to test the quality of the ranks generated by both 

methods, we decided to compare them with a list of 75 

swear words ranked in 5 levels of rudeness. We restricted 

the analysis to the 75 swear words that occurred at least 

more than 30 times in our movies’ dataset. The generated 

list contained most of the terms appearing in the list 

provided in [2], with the exception of those terms not 

occurring in our dataset or occurring with a very low 

frequency. Then, we asked four research colleagues to rank 

them using a list of 5 categories, ranging from 1 (very mild) 

to 5 (very strong). We requested them to do the 

classification based on their opinion about how rude each 

word would be in case that word would appear in a 

conversation with the chat agent.  

After this, we averaged their ranks to generate a gold 

standard reference. The reason for doing this was to 

minimize the effect of the different backgrounds of the 

annotators that played an important role in the process of 

ranking the words, something that became evident when 

checking the differences between their proposed ranks. In a 

future work, we plan to provide them each word in the 

context of a reference sentence that could be useful to 

establish context and reduce background effects. 

In order to test the correspondences between the rankings 

generated by the annotators, we used the Spearman 

correlation coefficient. More specifically, we randomly 

generated 10 thousand 5-sample rankings by randomly 

selecting one word from each category in the lists of 

categorized words produced by a reference annotator. Then, 

we created similar 5-sample test rankings for each one of 

the others annotators, by using the same words selected 

from the reference annotator. Then, we calculated the 

Spearman correlation for each of the experiments generated 

and averaged all the results. Table 2 shows that the resulting 

average Spearman coefficient between annotators is 0.614. 

This value is considered as our oracle result for the 

proposed algorithms. On the other hand, we can also see 

that the average Spearman correlation between the 

annotators and the produced gold standard is 0.899, which 

shows that the generated reference provides a good 

compromise between the different rankings proposed by the 

annotators. 

Then, we used the same procedure for estimating the 

Spearman correlations between the gold standard and the 

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 818 APSIPA ASC 2015

https://code.google.com/p/word2vec/


rankings generated by the two proposed methods: pseudo-

relevance algorithm with bootstrapping and the word 

embeddings. In this case, the position in the 5-sample 

rankings depended on the relative positions of the selected 

words in the generated ranks using any of the methods. In 

Table 2 we show a summary of the results obtained with the 

different techniques. Below we provide some insights about 

the obtained experiments. 

 

Description Value 

Average Spearman correlation between annotators 0.614 

Average Spearman correlation between the 

annotators and the gold standard 

0.899 

Spearman correlation between Rocchio algorithm 

(after 3 iterations) and the gold standard 

0.268 

Spearman correlation between Word Embeddings 

and the gold standard 

0.281 

Spearman correlation between the interpolated 

system (alpha = 0.5) and the gold standard 

0.551 

Table 2. Summary of correlation results obtained with the 

different techniques 

Regarding the Rocchio algorithm, we found that 3 

iterations of the bootstrapping algorithm provided the best 

result (i.e. 0.268), after the third iteration the value remained 

the same. This could mean that turn ranks do not change 

with the updated dictionary after the third iteration. One 

possible solution is that the number of words to weight from 

the top positions or the bottom positions needs to be updated 

as the algorithm iterates. At the same time, it could happen 

that our strategy of only adding words to the dictionary 

could require a different updating mechanism as, for 

instance, to allow for removing words from the dictionary 

too. On the other hand, we detected that our original 

proposal for ranking the turns based only on the number of 

swear words occurring in the sentence and normalizing this 

value by the number of words in the sentence, produced the 

undesired effect that most of the top ranked sentences were 

too short (i.e. containing only one or some few words). 

Therefore, we added a penalization term that favors longer 

phrases up to a certain limit to avoid selecting too long 

sentences. In our case, our best results were found using the 

penalization factor in equation 4. With this factor, we 

favored sentences containing between 10 and 30 words. 

 

min(1.3, log10(sentence_lenght)).   
 

(4) 

 

Finally, we decided to evaluate the linear interpolation 

between the rankings created by using both techniques. In 

this case, the combination was done by generating the 5-

sample test rankings for each technique and combining them 

using a linear interpolation between the rank positions 

generated by each method. Then, based on the obtained 

interpolation values we generated a new 5 categories 

ranking with independence of the differences between the 

actual floating values generated by the interpolation. In our 

experiments, we found that the best interpolation factor was 

0.5; however, we also found that a higher correlation could 

be obtained if we applied first a floor operation to the 

interpolated value before creating the ranking. The reason 

for this, although more experiments need to be done to 

confirm our guess, is that this procedure allows several 

words to share the same rank category minimizing the 

effects that small differences in the floating values produce 

completely different categories.. Besides, we also observed 

a similar situation during the calculation of the correlations 

between different human annotators; where it happened that 

the reference annotator considered that the five randomly 

selected words in the experiment belonged to different 

categories, but the test annotator put several of them in the 

same category. Therefore, by introducing this discretization 

mechanism we allow that closed words in the combined 

rank can remain closer also for the correlation calculation. 

As future work, we plan to consider additional combination 

formulas and procedures. 

V. CONCLUSIONS 

In this paper, we have described a methodology for 

automatically categorizing a dictionary of swear words in 5 

discrete categories that measure the level of rudeness of 

swear words. The proposed methodology first ranks the 

words using two different approaches: pseudo-relevance 

feedback with bootstrapping and word embeddings. The 

first approach relies on the creation of a ranking of 

sentences or turns from which the algorithm extracts swear 

words by exploiting the difference of word frequency 

distributions between the top and the bottom ranked 

sentences. The second approach is based on word 

embeddings trained on different domain texts. The process 

in this case was to rank the swear words based on the 

cumulative cosine distance between the given swear word 

and other swear words found in a list of its K-Nearest 

Neighbors. The motivation for this approach is that stronger 

swear words will have more and closer swear words as 

neighbors. 

To evaluate the rankings produced by the proposed 

techniques, we calculated Spearman correlation coefficients 

between the generated rankings and a gold standard 

reference on multiple subsets of selected swear words. The 

gold standard reference was created from averaging 

rankings generated by human annotators. These experiments 

proved that an interpolated system combining the output of 

both approaches provides a Spearman coefficient that is 

close to the one found between human annotators (0.551 vs 

0.614). Therefore, the proposed combined system can be 

seen as a good alternative to the manual process of creating 

the ranking. 

As future work, we propose to improve the rankings, in 

terms of its correlation with human annotations, by taking 

into account lexical-syntactic information as the ones 

proposed in [3], and combining them with emotional 

information (e.g. polarity and subjectivity as described in 
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[19], [20] and [21]). On the other hand, since our proposed 

system will be included as a pre-processing stage for 

cleaning chat engine training corpus, we will also work on a 

mechanism for creating replacement dictionaries where 

suitable milder synonyms will be proposed for more strong 

offensive words. In this way, rude words can be either 

replaced from the current training material or, at runtime, 

used to detect user's rudeness and then the chatbot will 

redirect the dialogue by using milder words.  
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