
Automatic Ranking of Swear Words using Word
Embeddings and Pseudo-Relevance Feedback

Luis Fernando D'Haro, Rafael E. Banchs
Human Language Technologies, A*STAR, Singapore

E-mail: {luisdhe, rembanchs}@i2r.a-star.edu.sg, Tel: +65-6408 2000

Abstract— This paper describes a method for automatically

ranking a dictionary of swear words based on their level of

rudeness. The final ranking is generated by combining two

baseline rankings: 1) using the normalized accumulated cosine

similarity between the word embeddings of the swear word

and the n-best list of closest neighborhoods, and 2) using a

pseudo-relevance feedback and bootstrapping algorithm. The

proposed methods are trained using dialogues extracted from

movies scripts and evaluated against a list of swear words

ranked manually in 5 categories by four different annotators.

The Spearman correlation coefficient between the rankings

generated by the proposed system and a consolidated gold

standard reaches a similar value to the ones obtained among

the different human annotators, proving that the proposed

method is a good alternative to the manual process.

I. INTRODUCTION

In recent years, the exponential grow in popularity of social

media and networking sites like Facebook, Twitter,

Youtube, Google+, etc. and, especially its popularity among

child and youth people, has increased the effort of website

administrators for detecting offensive language in order to

block unpleasant, discriminatory or sexual comments that

could hurt other users’ sensitiveness. A similar problem, but

in a different application, is found in the context of chatbot

and Q&A engines that are trained on human generated

contents. In this scenario, it could happen that some of the

dialogues or answers the system uses to learn could contain

offensive language that can lately be displayed to the users

as part of the machine generated answers. Therefore, it is

important to develop automatic methods that could help to

detect those contents in training data in order to allow

system developers to remove or modify those sentences

accordingly.

One of the first things we need to define is the meaning of

swear. In this paper, we have followed the adapted

definition from [1] and [2], i.e. “it is any word or phrase that

is likely to cause offense when used in middle class polite

conversation”. As we can see, this definition can cover a lot

of referents, for instance: religion, sexuality, ethnic groups

or nationalities, political affiliations, denigration or

oppression of groups of people, diseases or undesirable

behaviors [2].

Unfortunately, accurately detecting offensive language is

a difficult task since even the most basic approach (e.g.

based on keyword matching techniques), requires of a list of

swear words that could be difficult to create and update.

Although there is not a standard available dictionary, sites

like Wikipedia
1
, noswearing

2
, or youswear

3
 provide

extensive list of words that can be used as starting point.

However, the dictionary created from these kind of

resources will have two main problems: (1) the words will

not be classified according to their level or strength of

rudeness, and (2) some of the included words can be

considered as non-swear words depending on the context in

which they are used due to factors like polysemy. In

addition, we can mention other challenges to the

classification of offensive language such as the following.

(1) The lack of a large annotated corpus to train statistical

systems. (2) Although swear words could have a recognized

official spelling (e.g. given by the Oxford or Merriam-

Webster English Dictionaries), there could be national

variations in spelling and pronunciation of similar words.

Moreover, written swear words can be bleeped (i.e.

replacing some letters by * or - symbols), or by introducing

numbers, punctuations, or special symbols that could

resemble known letters (e.g. @ instead of the letter a,

$ instead of the letter s, 1 for letter l or i, etc.). Additionally,

there could be accidental or deliberated misspellings that

significantly deteriorate the performance of techniques

based on keyword or rule matching even when using well

known offensive patterns. (3) The level of offensiveness of

a sentence or swear word is very subjective and highly

depends on several factors, such as the user's age, gender,

background, vocabulary usage, the structure of the sentence,

and the user’s intention, among others [3]. Finally, (4) the

continuous evolution of the language and its usage make it

difficult to keep the dictionary updated. For instance, a word

that can be considered offensive at some point in time, after

sometime can be considered as mild (in [4], it is shown that

this is true except for some particular words that haven’t

change along the time).

1
https://en.wiktionary.org/wiki/Category:English_swear_wo

rds
2
 http://www.noswearing.com/dictionary

3
 http://www.youswear.com/index.asp?language=English

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 815 APSIPA ASC 2015

mailto:luisdhe,%20rembanchs%7d@i2r.a-star.edu.sg
https://en.wiktionary.org/wiki/Category:English_swear_words
https://en.wiktionary.org/wiki/Category:English_swear_words
http://www.noswearing.com/dictionary
http://www.youswear.com/index.asp?language=English

Despite of these problems, several attempts for

addressing the problem of offensive language classification

have been attempted in the past.

For instance, one of the first commercial products was

Smokey, which is described in [5]. This system included a

parser for syntactic analysis and then a series of semantic-

rules applied before a C4.5 decision tree classifier used to

categorize texts as offensive or not. In this system, the

profanity, insults, polite and praise rules were based on the

use of customized dictionaries of swear words.

In [3], a multi-level classifier, boosted by a dictionary of

insults and abuse words, is described. Here, the authors

mention a dictionary with around 2700 words, phrases and

expressions with different grades of rudeness labeled by

hand in a 1-to-5 scale based on the potential impact of each

entry on the classification of sentences. Unfortunately, this

dictionary is not available online, but the amount of entries

reflects an exhaustive amount of manual work that ideally

should be made automatic.

In [6], an automatic detector of cursing-related offensive

content in Twitter is proposed. The algorithm uses an initial

seed list of offensive words that is increased automatically

using bootstrapping and topic distributions (LDA). The

results show that this approach is suitable for detecting new

offensive words, even foreign and misspelled swear words.

As in our current work, the reason for attempting this kind

of approaches is that vulgarity is a type of linguistic style, as

pointed by [6], meaning that it is expressed within a

sentence with a certain rhythm; therefore, it will be frequent

to find more than one swear words together in a sentence

(see [7]). This allows for the use of distributional semantic

techniques for detecting additional words which carry

similar levels of rudeness in similar sentences or contexts.

Finally, in [8] an interesting classifier based on Lexical

Syntactic Features (LSF) is proposed. This classifier is able

to detect not only offensiveness at the sentence level, but

also at the user level by using user profiles. The extracted

features consider, among others: style, sentence structure,

content, use of intensifiers, as well as the use of dictionaries

with different levels of rudeness.

From the point of view of the scope of this paper, we are

not pursuing the creation of a classifier, as it was done in the

above systems, but proposing an automatic solution to the

problem of ranking the entries in a dictionary of swear

words according to their degree of offensiveness and

rudeness. Our motivation is to use this resource to help

cleaning up training corpora in the context of example-

based chat engines [9]. The rest of the paper is organized as

follows: in section II we describe the corpus of movie

scripts used to extract, rank and classify the offensive

words, as well as the seed dictionary of swear words we

collected from different websites; then in section III, we

describe the two proposed ranking approaches used to

estimate the level of rudeness, which are based on (1) word

embeddings and (2) Rocchio’s pseudo-relevance feedback

algorithm. Finally, in section IV, we present our main

conclusions and some future work.

II. DATABASE DESCRIPTION

For this work, we have used a refined version of the

Movie-DiC corpus described in [10]. This corpus was

extracted from movie scripts freely available from The

Internet Movie Script Data Collection
4
. The creation process

started by crawling this website and then identifying and

extracting the relevant segments from the scripts. Three

basic types of information elements were extracted from the

scripts: speakers, utterances and context. The utterance and

speaker information elements contain what is said at each

dialogue turn and the corresponding movie character who

says it, respectively. Context information elements, on the

other hand, contain all additional information/texts

appearing in the scripts, which are typically of narrative

nature and explain what is happening in the scene. For

detecting dialogue boundaries, some heuristics were

implemented by taking into account the size and number of

context elements between speaker turns.

In order to prepare the data for our experiments on

offensive language categorization, we applied additional

post-processing steps following recommendations from [6],

specifically those mentioned in steps 7 and 8 (simplification

of intentional repetitions of letters), 9 (stop-words removal)

and 10 (removal of words containing mixtures of letters

with numbers and/or symbols). We also performed several

normalizations such as contraction expansions (e.g. I'll for I

will, don't for do not, ya' for you all), omission of letters

(e.g. tryin' for trying), resolving misspellings (by using the

Wikipedia dictionary of common misspellings
5
), as well as

several regular expressions rules for normalizing

punctuation. Finally, we used NLTK TreeBank-

WordTokenizer to obtain all words in a sentence [11].

Statistics Value

Total number of movies 615

Total number of dialogues 65,215

Total number of speaker turns 512,582

Average amount of dialogues per movie 106.1

Average amount of turns per movie 824.8

Average amount of turns per dialogue 7.86

Average length of words in a turn 13.7

Total number of words 7,019,963

Vocabulary size 79,525

Number of different swear words found 1723

Average number of swear words found

together in the same sentence

1.44 ± 0.92

Average number of swear words per

sentence

0.19

Maximum number of swear words found in

a sentence

27

TABLE 1. MAIN STATISTICS OF THE COLLECTED MOVIE DIALOGUE

DATASET

4
http://www.imsdb.com/

5
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common

_misspellings

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 816 APSIPA ASC 2015

http://www.imsdb.com/
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings

Another important resource required for our proposed

methods is a seed dictionary of swear words. For this, we

collected all the words in the sites mentioned in the

introduction (i.e. Wikipedia, noswearing and youswear),

plus some few other sites, obtaining a total of 5845 words.

In the generated dictionary, most of the entries are single

words (i.e. 4587) while the rest were phrases. On the other

hand, we found that the total number of swear words in this

dictionary that also occur in the movie script data collection

was 1723. From this list of words, we extracted the 75

highest frequent swear words with different levels of

rudeness. The selection included 52 of the words mentioned

in Table 6 from [2], and some others that were more

frequent in our considered dataset. Then, we asked 4

researchers from our lab to classify those words in the same

5 different categories used in [2], i.e: very strong, strong,

moderate, mild, and very mild.

III. PROPOSED METHODOLOGIES

In this section, we explain the two methodologies used to

rank the list of the 75 selected swear words. The first

methodology is based on the use of Rocchio’s pseudo-

relevance feedback [12] and bootstrapping [13]. The second

method is based on the use of word embeddings trained

using deep neural networks as proposed in [14].

A. Creation of the ranking using pseudo-relevance

feedback and bootstrapping

One of the motivations for using bootstrapping in this

method was to follow a similar approach to [6] but by

replacing the LDA topic models with Rocchio’s Pseudo-

Relevance Feedback algorithm. Up to the best of our

knowledge, this is the first time these two algorithms are

combined for this task. In addition, we also implemented a

weighting mechanism that improved the results. The

procedure for ranking in the list of words into the five

categories mentioned in section II is as follow:

1. We generated a binary word-document matrix
6
 for all

terms appearing more than twice in all turns in the

dataset. The resulting matrix was of size ~ 40K x 500K.

2. Then, we ranked the columns of the matrix, which

corresponds to the whole set of turns (~500K), based on

the number of occurrences of swear words that appear

in the seed dictionary of swear words we described in

section II.

3. Next, we created two vectors. The first one corresponds

to the weighted sum of the top 10K binary vectors in

the ranked list of turns. For this, we applied a

decreasing continuous weight (wm in equation 1). The

second vector corresponds to the weighted sum of the

last 300K vectors in the ranking. In this case, we

applied an increasing continuous weight (w’m in

equation 1). In Equation 1, M stands for the total

number turns in the movie scripts.

6 In our experiments we also evaluated a TF-IDF matrix, but the results
were slightly worst. Therefore we finally used the binary matrix.

𝑤𝑚 =
𝑀 − 𝑚

𝑀
, 𝑤𝑚

′ =
𝑚

𝑀
 (1)

4. Finally, we subtracted the two previous vectors and

retained the N words with the highest weights. These N

words were then used to update the original seed

dictionary of swear words after each iteration. Eq. (2)

shows the formula used for getting the final vector

containing ranking of words; here, V stands for the total

number of words in the vocabulary, K the total number

of turns from the top of the turn ranking, and L the total

number of turns from the bottom; wk and w’l are the

corresponding weighting factors, and h is the original

binary term-document matrix and h’ is the same matrix

with the order of columns inverted.
7

𝐻𝑣
𝑓𝑖𝑛𝑎𝑙

= ∑ ∑ 𝑤𝑘 ∗ ℎ𝑘𝑣

𝑉

𝑣=0

𝐾

𝑘=0

− ∑ ∑ wl
′

𝑉

𝑣=0

∗ hlv
′

𝐿

𝑙=0

 (2)

The four-step process described above is repeated several

times, and after each iteration the new updated list of swear

words is used.

B. Creation of the ranking using word embeddings

In [2] it is mentioned that the strength of swearing varies

depending on the percentage of people that would take

offense at a particular usage. Measuring directly such a

percentage will require a huge corpus of annotated

sentences that is not publicly available. Therefore, in order

to alleviate this problem, we propose an automatic

procedure based on the use of word embeddings, which are

created by using neural networks and trained from texts

extracted from different domains. In [14] it is shown that

these word embeddings are able to capture lexical-semantic

information thanks to the incorporation of contextual

information during the training stage. These embeddings are

typically of lower dimensions than the original data space,

so well known metrics such as the cosine or Euclidean

distance can be used to measure the level of relationship

between terms. Clearly, these embeddings present

interesting properties that have been exploited in different

tasks like machine translation [15], Q&A [16], information

retrieval [17], or selection of distractor candidates for

automatic evaluation of students [18]. On the other hand, it

is important to mention that it has been found in many

studies that the quality of these embeddings highly depends

on (a) the amount of training data, (b) the tuning of several

parameters (e.g. size of the embedding, window size,

number of negative examples, minimum number of

occurrences, number of classes, etc.), and (c) the number of

times and contexts in which each word appears.

Taking into account the advantages of the embeddings,

and that through them it would be possible to detect similar

swear words occurring in similar contexts, we hypothesize

7 This formula is expressed in a general form so it can be used with a TF-

IDF matrix or with our binary matrix. In addition K and L can be set to M
to account for a continuous weighting scheme.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 817 APSIPA ASC 2015

that it would be possible to measure the level of rudeness of

a word based on the number and distances to similar words

in the embeddings that are also swear words. Here, we

propose to use a normalized accumulated distance (𝑤𝑟̅̅̅̅)

between all words in the vocabulary and the list of swear

words found among the K-Nearest Neighbors. For

identifying the nearest neighbors we use the cosine distance

between the vectors in the embedding as shown in equation

3. Based on this accumulated distance, we generate the final

ranked list of words.

𝑤𝑟 = ∑ 𝑐𝑜𝑠(𝑤, 𝑤𝑘), 𝑏𝑒𝑖𝑛𝑔 𝑤𝑟̅̅̅̅ =
1

𝑚𝑎𝑥 (𝑤𝑟)

𝐾

𝑘=0

 (3)

In this work, we used two different kinds of word

embeddings. (1) A publicly available word embedding

trained on part of Google News dataset (containing ~100

billion words) of text data extracted from news
8
. This model

contains 300-dimensional vectors for around 3 million

words and phrases. (2) Word embeddings trained using the

full text of dialogue turns in the movie script dataset under

consideration. Since the amount of data in the last case is

significantly lower than in the first case, the dimension of

these embeddings was set to 150 to avoid that some of the

embedding dimensions could not be well trained due to data

scarceness. Finally, in both cases the embedding were

obtained using the skip-gram method. The motivation for

using both embeddings is to account for domain

independent and domain dependent information, which

considers general and specific usage frequency of each

word, minimizing some of the problems with the

embeddings mentioned before. In this way, the general

embedding from Google news can provide coverage, while

the movie's embedding will provide domain specificity.

Unfortunately, for our proposed task, it is not possible to

avoid the problem that the Google’s embedding was

extracted from news, where many swear words (especially

stronger ones) might not occur at all or only appear few

times. Therefore, the resulting nearest neighbors will be

unrelated or common words. On the other hand, our domain

specific embeddings will face a data scarcity problem, since

more training data is required in order to properly model

swear word contexts (i.e. take into account that in our data

only around 6.5% of the sentences were found to have at

least one swear word).

The procedure to combine both embedding is as follow:

1. For each word in the vocabulary, we extracted the K-

Nearest Neighbors and their cosine distance using first

the embedding from Google and then from our

database.

2. Then, for each word we calculated the cumulative

cosine distance considering only the distance of those

neighbors that were swear words according to our full

dictionary. Since the combination of both kind of

8
 Available at https://code.google.com/p/word2vec/

embedding is done at the cosine distances, the

differences in the sizes of the embedding do not pose a

problem.

3. Then, only the known swear words are extracted and a

new rank is created based their normalized cosine

distance.

4. Optionally, it is possible to extract new unknown swear

words by considering as candidates words obtaining

high cumulative values, or by considering words that

appear frequently as neighbors of well known swear

words.

IV. EXPERIMENTS AND RESULTS

In order to test the quality of the ranks generated by both

methods, we decided to compare them with a list of 75

swear words ranked in 5 levels of rudeness. We restricted

the analysis to the 75 swear words that occurred at least

more than 30 times in our movies’ dataset. The generated

list contained most of the terms appearing in the list

provided in [2], with the exception of those terms not

occurring in our dataset or occurring with a very low

frequency. Then, we asked four research colleagues to rank

them using a list of 5 categories, ranging from 1 (very mild)

to 5 (very strong). We requested them to do the

classification based on their opinion about how rude each

word would be in case that word would appear in a

conversation with the chat agent.

After this, we averaged their ranks to generate a gold

standard reference. The reason for doing this was to

minimize the effect of the different backgrounds of the

annotators that played an important role in the process of

ranking the words, something that became evident when

checking the differences between their proposed ranks. In a

future work, we plan to provide them each word in the

context of a reference sentence that could be useful to

establish context and reduce background effects.

In order to test the correspondences between the rankings

generated by the annotators, we used the Spearman

correlation coefficient. More specifically, we randomly

generated 10 thousand 5-sample rankings by randomly

selecting one word from each category in the lists of

categorized words produced by a reference annotator. Then,

we created similar 5-sample test rankings for each one of

the others annotators, by using the same words selected

from the reference annotator. Then, we calculated the

Spearman correlation for each of the experiments generated

and averaged all the results. Table 2 shows that the resulting

average Spearman coefficient between annotators is 0.614.

This value is considered as our oracle result for the

proposed algorithms. On the other hand, we can also see

that the average Spearman correlation between the

annotators and the produced gold standard is 0.899, which

shows that the generated reference provides a good

compromise between the different rankings proposed by the

annotators.

Then, we used the same procedure for estimating the

Spearman correlations between the gold standard and the

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 818 APSIPA ASC 2015

https://code.google.com/p/word2vec/

rankings generated by the two proposed methods: pseudo-

relevance algorithm with bootstrapping and the word

embeddings. In this case, the position in the 5-sample

rankings depended on the relative positions of the selected

words in the generated ranks using any of the methods. In

Table 2 we show a summary of the results obtained with the

different techniques. Below we provide some insights about

the obtained experiments.

Description Value

Average Spearman correlation between annotators 0.614

Average Spearman correlation between the

annotators and the gold standard

0.899

Spearman correlation between Rocchio algorithm

(after 3 iterations) and the gold standard

0.268

Spearman correlation between Word Embeddings

and the gold standard

0.281

Spearman correlation between the interpolated

system (alpha = 0.5) and the gold standard

0.551

Table 2. Summary of correlation results obtained with the

different techniques

Regarding the Rocchio algorithm, we found that 3

iterations of the bootstrapping algorithm provided the best

result (i.e. 0.268), after the third iteration the value remained

the same. This could mean that turn ranks do not change

with the updated dictionary after the third iteration. One

possible solution is that the number of words to weight from

the top positions or the bottom positions needs to be updated

as the algorithm iterates. At the same time, it could happen

that our strategy of only adding words to the dictionary

could require a different updating mechanism as, for

instance, to allow for removing words from the dictionary

too. On the other hand, we detected that our original

proposal for ranking the turns based only on the number of

swear words occurring in the sentence and normalizing this

value by the number of words in the sentence, produced the

undesired effect that most of the top ranked sentences were

too short (i.e. containing only one or some few words).

Therefore, we added a penalization term that favors longer

phrases up to a certain limit to avoid selecting too long

sentences. In our case, our best results were found using the

penalization factor in equation 4. With this factor, we

favored sentences containing between 10 and 30 words.

min(1.3, log10(sentence_lenght)).

(4)

Finally, we decided to evaluate the linear interpolation

between the rankings created by using both techniques. In

this case, the combination was done by generating the 5-

sample test rankings for each technique and combining them

using a linear interpolation between the rank positions

generated by each method. Then, based on the obtained

interpolation values we generated a new 5 categories

ranking with independence of the differences between the

actual floating values generated by the interpolation. In our

experiments, we found that the best interpolation factor was

0.5; however, we also found that a higher correlation could

be obtained if we applied first a floor operation to the

interpolated value before creating the ranking. The reason

for this, although more experiments need to be done to

confirm our guess, is that this procedure allows several

words to share the same rank category minimizing the

effects that small differences in the floating values produce

completely different categories.. Besides, we also observed

a similar situation during the calculation of the correlations

between different human annotators; where it happened that

the reference annotator considered that the five randomly

selected words in the experiment belonged to different

categories, but the test annotator put several of them in the

same category. Therefore, by introducing this discretization

mechanism we allow that closed words in the combined

rank can remain closer also for the correlation calculation.

As future work, we plan to consider additional combination

formulas and procedures.

V. CONCLUSIONS

In this paper, we have described a methodology for

automatically categorizing a dictionary of swear words in 5

discrete categories that measure the level of rudeness of

swear words. The proposed methodology first ranks the

words using two different approaches: pseudo-relevance

feedback with bootstrapping and word embeddings. The

first approach relies on the creation of a ranking of

sentences or turns from which the algorithm extracts swear

words by exploiting the difference of word frequency

distributions between the top and the bottom ranked

sentences. The second approach is based on word

embeddings trained on different domain texts. The process

in this case was to rank the swear words based on the

cumulative cosine distance between the given swear word

and other swear words found in a list of its K-Nearest

Neighbors. The motivation for this approach is that stronger

swear words will have more and closer swear words as

neighbors.

To evaluate the rankings produced by the proposed

techniques, we calculated Spearman correlation coefficients

between the generated rankings and a gold standard

reference on multiple subsets of selected swear words. The

gold standard reference was created from averaging

rankings generated by human annotators. These experiments

proved that an interpolated system combining the output of

both approaches provides a Spearman coefficient that is

close to the one found between human annotators (0.551 vs

0.614). Therefore, the proposed combined system can be

seen as a good alternative to the manual process of creating

the ranking.

As future work, we propose to improve the rankings, in

terms of its correlation with human annotations, by taking

into account lexical-syntactic information as the ones

proposed in [3], and combining them with emotional

information (e.g. polarity and subjectivity as described in

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 819 APSIPA ASC 2015

[19], [20] and [21]). On the other hand, since our proposed

system will be included as a pre-processing stage for

cleaning chat engine training corpus, we will also work on a

mechanism for creating replacement dictionaries where

suitable milder synonyms will be proposed for more strong

offensive words. In this way, rude words can be either

replaced from the current training material or, at runtime,

used to detect user's rudeness and then the chatbot will

redirect the dialogue by using milder words.

ACKNOWLEDGEMENTS

We want to thank the 4 annotators for their contribution

on annotating the list of words, and for their useful

comments about how to improve the paper.

REFERENCES

[1] McEnery, Tony. “Swearing in English: Bad language, purity

and power from 1586 to the present”. Routledge, 2004.

[2] Mike Thelwall. "Fk yea I swear: cursing and gender in

MySpace." Corpora 3.1 (2008): 83-107.

[3] Amir H. Razavi, Diana Inkpen, Sasha Uritsky, and Stan

Matwin. 2010. “Offensive language detection using multi-

level classification”. In Proceedings of the 23rd Canadian

conference on Advances in Artificial Intelligence (AI'10),

Atefeh Farzindar and Vlado Kešelj (Eds.). Springer-Verlag,

Berlin, Heidelberg, 16-27. DOI=10.1007/978-3-642-13059-

5_5.

[4] Jay, Timothy. "The utility and ubiquity of taboo words."

Perspectives on Psychological Science 4.2 (2009): 153-161.

[5] Spertus, Ellen. "Smokey: Automatic recognition of hostile

messages." AAAI/IAAI. 1997.

[6] Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and Carolyn

Rose. 2012. “Detecting offensive tweets via topical feature

discovery over a large scale twitter corpus”. In Proceedings of

the 21st ACM international conference on Information and

knowledge management (CIKM '12). ACM, New York, NY,

USA, 1980-1984. DOI=10.1145/2396761.2398556.

[7] Martin, James R., and Peter R. White. “The language of

evaluation: Appraisal in English”. Palgrave Macmillan, 2003.

[8] Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu. 2012.

“Detecting Offensive Language in Social Media to Protect

Adolescent Online Safety”. In Proceedings of the 2012

ASE/IEEE International Conference on Social Computing and

2012 ASE/IEEE International Conference on Privacy,

Security, Risk and Trust (SOCIALCOM-PASSAT '12). IEEE

Computer Society, Washington, DC, USA, 71-80.

DOI=10.1109/SocialCom-PASSAT.2012.55.

[9] Banchs, Rafael E., and Haizhou Li. "IRIS: a chat-oriented

dialogue system based on the vector space model."

Proceedings of the ACL 2012 System Demonstrations.

Association for Computational Linguistics, 2012.

[10] Banchs, Rafael E. "Movie-DiC: a movie dialogue corpus for

research and development." Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics:

Short Papers-Volume 2. Association for Computational

Linguistics, 2012.

[11] Bird, Steven. "NLTK: the natural language toolkit."

Proceedings of the COLING/ACL on Interactive presentation

sessions. Association for Computational Linguistics, 2006.

[12] Rocchio, Joseph John. "Relevance feedback in information

retrieval." in The SMART Retrieval System - Experiments in

Automatic Document Processing. Prentice Hall. Edited by

Salton, Gerard, pps. 313-323. 1971.

[13] Efron, Bradley. "Bootstrap methods: another look at the

jackknife." The annals of Statistics (1979): 1-26.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

“Efficient Estimation of Word Representations in Vector

Space”. In Proceedings of Workshop at ICLR, 2013.

[15] Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever. "Exploiting

similarities among languages for machine translation." arXiv

preprint arXiv:1309.4168 (2013).

[16] Belinkov, Yonatan, et al. "VectorSLU: A Continuous Word

Vector Approach to Answer Selection in Community

Question Answering Systems." Proceedings of the 9th

International Workshop on Semantic Evaluation, SemEval.

Vol. 15. 2015.

[17] Liu, Xiaodong, et al. "Representation Learning Using Multi-

Task Deep Neural Networks for Semantic Classification and

Information Retrieval." Proc. NAACL, May 2015.

[18] Kumar, Girish, Rafael E. Banchs, and Luis F. D’Haro.

"RevUP: Automatic Gap-Fill Question Generation from

Educational Texts." The Tenth Workshop on Innovative Use

of NLP for Building Educational Applications, NAACL HLT

(2015): 154-161.

[19] Montoyo, Andrés, Patricio Martínez-Barco, and Alexandra

Balahur. "Subjectivity and sentiment analysis: An overview of

the current state of the area and envisaged developments."

Decision Support Systems 53.4 (2012): 675-679.

[20] Kumar Ravi, Vadlamani Ravi, A survey on opinion mining

and sentiment analysis: Tasks, approaches and applications,

Knowledge-Based Systems, Available online 29 June 2015,

ISSN 0950-7051,

http://dx.doi.org/10.1016/j.knosys.2015.06.015.

[21] Shirani-Mehr, Houshmand. "Applications of Deep Learning to

Sentiment Analysis of Movie Reviews." Available at

http://cs224d.stanford.edu/reports.html [July 2015]

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 820 APSIPA ASC 2015

http://dx.doi.org/10.1016/j.knosys.2015.06.015
http://cs224d.stanford.edu/reports.html

