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Abstract—A sparse sound field decomposition method is pro-
posed. Sound field decomposition is the foundation of the various
acoustic signal processing applications and enables the estimation
of the entire sound field from pressure measurements. The plane
wave decomposition, i.e., spatial Fourier analysis, of the sound
field has been widely used; however, artifacts originating from
spatial aliasing occur above the spatial Nyquist frequency. We
have proposed a sparse sound field decomposition method based
on a generative model as a sum of monopole source and plane
wave components in the context of sound field recording and
reproduction. For more accurate and robust decomposition, we
propose three different group sparse signal models based on
physical properties and a decomposition algorithm by extending
sparse Bayesian learning. In simulation experiments, the accu-
racy of sparse decomposition was improved compared with that
of current methods.

I. INTRODUCTION

Sound field decomposition is a fundamental problem in
sound field analysis, reconstruction, and visualization. The
objective of sound field decomposition is to represent a sound
field as a linear combination of fundamental solutions of the
wave equation (or Helmholtz equation) from the pressure mea-
surements of multiple microphones. This makes it possible for
the entire sound field to be estimated from the measurements.
Plane wave decomposition, which corresponds to the spatial
Fourier analysis of the sound field [1], has been commonly
used because of its computational efficiency. In recent years,
the sparse decomposition of the sound field has been proved
to be effective in several applications [2]–[4] owing to the
recent development of sparse decomposition algorithms in the
context of compressed sensing [5], [6].

In sound field recording and reproduction targeted at high-
fidelity audio systems, sound pressures at multiple positions in
a recording area are obtained with microphones and are then
reproduced with loudspeakers in a target area. The driving
signals of the loudspeakers used for reproduction must be
calculated from the signals received by the microphones. This
signal conversion can be achieved using the wave field recon-
struction (WFR) filtering method, which is based on spatial
Fourier analysis. We have derived the WFR filter for various
array configurations [7]–[9]. Although this method enables
stable and efficient signal conversion, artifacts originating from
spatial aliasing notably occur, depending on the interelement
spacing in the microphone or loudspeaker array. In the case of
significant spatial aliasing artifacts, listeners may be unable to
clearly localize the reproduced sound images. Furthermore,

the frequency characteristics of the reproduced sound are
adversely affected, which is referred to as the coloration effect.

We previously developed a signal conversion method based
on sparse sound field decomposition to reduce the effect of
spatial aliasing artifacts [4], [10], in which the sound field
is modeled as the sum of monopole source and plane wave
components. Since only a few monopole components may
exist inside a region near the microphones, it is possible to
sparsely decompose the observed signals into basis functions,
or dictionaries, consisting of Green’s function. This method
makes it possible to improve the reproduction accuracy above
the spatial Nyquist frequency when the number of micro-
phones is smaller than that of loudspeakers, which can be
regarded as super-resolution in recording and reproduction.

For more accurate and robust sparse decomposition, prior
information on the structure of the recording sound field may
be useful. We have proposed three different group sparse signal
models based on the physical properties of the sound field [10].
To address these signal models, an algorithm extended from
the M-FOCUSS algorithm [11] was applied in [10]. In this
paper, we extend the algorithm called sparse Bayesian learning
(SBL) [12], [13] so that the proposed group sparse signal
models can be addressed. Furthermore, we compare several
algorithms in terms of their sparse sound field decomposition
performance via numerical simulations.

II. GENERATIVE MODEL OF SOUND FIELD AND ITS SPARSE
DECOMPOSITION

As shown in Fig. 1, a sound field is divided into two regions,
internal and external, of a closed surface. The internal region
is denoted as Ω. When a sound pressure of temporal frequency
ω at position r is denoted as p(r, ω), the following equation
should be satisfied:(

∇2 + k2
)
p(r, ω) =

{
−Q(r, ω), r ∈ Ω
0, r /∈ Ω

, (1)

where Q(r, ω) is the distribution of the monopole components
inside Ω and k = ω/c is the wave number obtained by
setting the sound speed as c. Hereafter, ω is omitted for
notational simplicity. Equation (1) indicates that p(r) satisfies
the inhomogeneous and homogeneous Helmholtz equations at
r ∈ Ω and r /∈ Ω, respectively. Therefore, the solution of
(1) can be represented as the sum of the inhomogeneous and
homogeneous terms, pi(r) and ph(r), respectively. pi(r) is rep-
resented as a convolution of Q(r) and the three-dimensional
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Fig. 1. Generative model of sound field.

free-field Green’s function G(r|r′) as [1]

p(r) = pi(r) + ph(r)

=

∫
r′∈Ω

Q(r′)G(r|r′)dr′ + ph(r), (2)

where

G(r|r′) = ejk|r−r′|

4π|r− r′|
. (3)

Here, G(r|r′) corresponds to the transfer function between the
monopole source at r′ and the position r. Equation (2) can be
confirmed by substituting it into (1) as

(∇2 + k2)

{∫
r′∈Ω

Q(r′)G(r|r′)dr′ + ph(r)

}
= −

∫
r′∈Ω

δ(r− r′)Q(r′)dr′

=

{
−Q(r), r ∈ Ω
0, r /∈ Ω

. (4)

Since it is assumed that sound sources do not exist outside Ω,
the homogeneous term ph(r) can be represented as the sum
of plane waves.

Our objective is to decompose the sound field into pi(r) and
ph(r) from sound pressure measurements inside Ω. As shown
in Fig. 2, we assume that the sound pressure distribution on
the receiving plane Γ is obtained. By spatial Fourier analysis,
which corresponds to only the use of ph(r), the signal energy
may be spread over the basis functions even when a single
monopole source exists; therefore, spatial aliasing artifacts
cannot be avoided. On the other hand, when the decomposition
into pi(r) and ph(r) is accurately performed, the dominant
component of the observed signal can be represented by pi(r)
since the monopole components lie close to Γ. Furthermore,
Q(r) (r ∈ Ω) may become sparse because it can be considered
that the monopole components exist only at a few locations in
Ω. When these assumptions are approximately satisfied, more
accurate sound field estimation can be achieved, particularly
above the spatial Nyquist frequency. For instance, in sound
field recording and reproduction, the reproduction accuracy
can be improved above the spatial Nyquist frequency by this
representation [4].

In practice, (2) must be discretized to derive a computational
algorithm for the decomposition. The region Ω is discretized

Fig. 2. Sound field modeled by sum of monopole source and plane wave
components. The sound pressure is obtained on the receiving plane Γ.

as a set of grid points. Omnidirectional microphones are dis-
cretely aligned on Γ to capture the sound pressure distribution.
The numbers of microphones and grid points are denoted as
M and N , respectively. We assume N ≫M because the grid
points should entirely and densely cover the region Ω. The
discrete form of (2) can be represented as

y = Dx+ z, (5)

where y ∈ CM and x ∈ CN respectively denote the
signals received by the microphones and the distribution of
the monopole components at the grid points, z ∈ CM is
the homogeneous term, which corresponds to the ambient
components, and D ∈ CM×N is the dictionary matrix of
the monopole components, whose elements consist of Green’s
functions between the grid points and the microphones. As
discussed above, we assume that x is the dominant component
of y and that z is a residual. Since it can be assumed that
only a few monopole components exist in Ω, a small number
of elements in x may have nonzero values. Therefore, sparse
decomposition algorithms [5], [6] can be applied to decompose
y into x and z.

III. GROUP SPARSE SIGNAL MODELS BASED ON PHYSICAL
PROPERTIES

A fundamental difficulty lies in the sparse decomposition of
(5). On one hand, the grid points should cover Ω as densely
as possible for an accurate signal representation. On the other
hand, the dense distribution of the grid points leads to a
high correlation between the columns of D, which makes the
sparse signal decomposition difficult [6]. Therefore, we exploit
prior information on the structure of the sound field, i.e., the
structure of the solution vector x. We describe three different
group sparse signal models based on the physical properties
of the sound field.

Model 1: multiple time frames

When multiple time frames of y are available and monopole
components can be assumed to be static, each x may have
the same sparsity pattern. The sparse decomposition problem
using this model is known as the multiple measurement vector
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(MMV) problem, for which several algorithms have been
proposed [11], [13]–[15].

We denote the index of the time frame as l ∈ {1, · · · , L}
and the signals of each l as yl ∈ CM , xl ∈ CN , and zl ∈ CM .
By concatenating them in vectors, we can represent (5) as

y1

y2

...
yL

 =


D 0

D
. . .

0 D



x1

x2

...
xL

+


z1
z2
...
zL

 . (6)

Each xl is assumed to have nonzero values at the same
positions.

Model 2: temporal frequencies

Many types of acoustic source signals have a broad fre-
quency band. Therefore, each x in multiple frequency bins
may have the same sparsity pattern. Similarly to model 1,
using the index of the frequency bin l ∈ {1, · · · , L}, we denote
the signals of each l as yl ∈ CM , xl ∈ CN , and zl ∈ CM .
Since Green’s function depends on the temporal frequency,
the dictionary matrix of each l is denoted as Dl ∈ CM×N .
Therefore, (5) can be represented as

y1

y2

...
yL

 =


D1 0

D2

. . .
0 DL



x1

x2

...
xL

+


z1
z2
...
zL

 . (7)

Again, each xl is assumed to have nonzero values at the same
positions. Note that the dictionary matrices in (7) are different
in each group, whereas those in (6) are the same.

Model 3: image sources and multipole components

Signals obtained in an ordinary room have reflections from
walls in addition to direct sound. This phenomenon leads to
the presence of monopole components at the reflective image
source locations [16]. As another example, since the sound
sources have a complex directivity pattern, multipole source
components, such as dipole and quadrupole components, may
exist at the same location as monopole components [1]. These
properties can be represented by the same group sparse signal
model.

When considering an image source model, using the index
of the image sources l ∈ {1, · · · , L}, we denote the signal
of each l as xl ∈ CN . Green’s function between the lth
image source location and the microphones is denoted as
Dl ∈ CM×N . Therefore, (5) can be represented as

y =
[
D1,D2, · · · ,DL

]

x1

x2

...
xL

+ z. (8)

Again, each xl is assumed to have nonzero values at the same
positions. Note that the length of y is degenerated to M .
Therefore, the structure of the dictionary matrix is different

from that in (6) and (7). In this scenario, room geometry must
be known to design Dl.

In the case of multipole components, Dl in (8) becomes
Green’s function for each multipole.

Combined models

Models 1, 2, and 3 can be arbitrarily combined. For instance,
in the case of combining models 1 and 2, each xl in (6)
is replaced by the solution vector in (7), and the dictionary
matrix is designed accordingly. To combine J groups, the sets
of indexes of the groups are denoted as Gj (j ∈ {1, · · · , J}),
and the index of the jth group is denoted as lj ∈ {1, · · · , |Gj |}.
We redefine the signal vectors and dictionary matrix as x ∈
CN |G1|···|GJ |, y, z, and D. The sizes of y, z, and D depend on
the types of combination of models. Each group has a nested
structure in the solution vector x. These variables can also be
related as a linear equation as in (5). We previously proposed
an algorithm for solving the group sparse decomposition
problem by extending M-FOCUSS [10], [11].

IV. GROUP SPARSE BAYESIAN LEARNING

SBL was first proposed as a method of solving sparse
representation problems in the context of regression and
classification [17], [18]. Wipf and Rao applied SBL to signal
processing [12] and extended it to solve the MMV problem
[13]. Another extension to address the temporal correlation in
the MMV problem was proposed by Zhang and Rao [19].

We now extend SBL to solve the group sparse signal repre-
sentation problem. We assume the likelihood function ρ(y|x)
as a circularly symmetric complex Gaussian distribution with
the noise variance σ2:

ρ (y|x) =
(
πσ2

)−N |G1|···|GJ |
exp

(
− 1

σ2
∥y −Dx∥22

)
. (9)

We assume that the prior distribution of each element of x is
an independent complex Gaussian as follows:

ρ (x;γ) =
∏

n,l1,··· ,lJ

(πγn)
−1

exp

(
−|xn,l1,··· ,lJ |2

γn

)
, (10)

where xn,l1,··· ,lJ is the nth element of the l1, · · · , lJ th group
of x and γ = [γ1, · · · , γN ]T ∈ RN

+ is a positive variance
parameter. Note that γ has the same value within each group.
By combining (9) and (10), the posterior density of x also
becomes the Gaussian

ρ (x|y;γ) = ρ (x,y;γ)∫
ρ (x,y;γ) dx

= N (µ,Σ) . (11)

Here, the mean µ and covariance Σ are written as [20]

µ = ΓDHΣ−1
y DΓ (12)

Σ = Γ− ΓDHΣ−1
y DΓ, (13)

where Γ = diag (γ, · · · ,γ) and Σy = σ2I+DΓDH .
By optimizing γ, appropriate grid points can be selected

among n. In the empirical Bayesian strategy, the marginal
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Algorithm 1 Group sparse Bayesian learning algorithm.
Initialize γ, t = 1
while loop ̸= 0 do

Σy ← σ2I+DΓDH

Σ← Γ− ΓDHΣ−1
y DΓ

for all n do
γn ← 1

|G1|···|GJ |
∑

l1,··· ,lJ

(
µ2
n,l1,··· ,lJ

+diag (Σ)n,l1,··· ,lJ

)
end for
t← t+ 1
if stopping condition is satisfied then
loop = 0

end if
end while

likelihood is used as the cost function,

L(γ) = − log

∫
ρ (y|x) ρ (x;γ) dx

= − log ρ (y;γ)

= log |Σy|+ yHΣ−1
y y, (14)

where the derivation of the last line can be found in [20].
Therefore, L(γ) must be minimized with respect to γ.

To solve the minimization problem of (14), we apply the
EM algorithm by treating x as hidden data [18]. For the E-
step, the posterior moments are calculated using (13) as

Ex|y,γ(t)

[
|xn,l1,··· ,lJ |2

]
= µ2

n,l1,··· ,lJ + diag(Σ)n,l1,··· ,lJ , (15)

where γ(t) is the estimate of γ at the tth step. For the M-step,
γ(t) is updated as

γ(t+1) = arg max
γ

Ex|y,γ(t) [log p (y,x;γ)]

= arg max
γ

Ex|y,γ(t) [log p (x;γ)] . (16)

By setting the derivative of log p(x;γ) with respect to γn as
0, the following update rule can be obtained for each n:

γ(t+1)
n

= Ex|y,γ(t)

 1

|G1| · · · |GJ |
∑

l1,··· ,lJ

|xn,l1,··· ,lJ |2


=
1

|G1| · · · |GJ |
∑

l1,··· ,lJ

(
µ2
n,l1,··· ,lJ + diag (Σ)n,l1,··· ,lJ

)
.

(17)

The resulting algorithm is summarized in Algorithm 1.
Although the noise variance σ2 in (9) is assumed to be

known in the above derivation, it can be simultaneously
estimated [18]. However, it is known that the estimate of σ2

can be inaccurate in the SBL framework [12], [13].

V. EXPERIMENTS

Numerical simulations were conducted to evaluate the pro-
posed method. First, we compared group SBL with several
sparse decomposition algorithms using synthetic data. Second,
we demonstrated a sparse sound field decomposition using the
proposed method.

A. Comparison of algorithms using synthetic data

We compared group SBL (G-SBL) with M-SBL [13], group
FOCUSS (G-FOCUSS) [10], and M-FOCUSS [11] using
randomly generated signals and dictionaries. Two different
combinations models, models 1 and 2 and model 1 and 3,
were investigated.

To evaluate the performance of sparse decomposition, the F-
measure (Fmsr) and signal-to-distortion ratio (SDR) were used.
The operator supp(·) is used to extract a set of indexes such
that the amplitude of each element of the estimated solution
vector x̂ is larger than a threshold value ϵ,

supp(x̂) = {n ∈ {1, · · · , N |G1||G2|} | |x̂n| > ϵ} , (18)

where x̂n is the nth element of x̂. Fmsr is defined as

Fmsr = 2
|supp(x̂) ∩ supp(xtrue)|
|supp(x̂)|+ |supp(xtrue)|

, (19)

where xtrue is the true solution vector. Therefore, Fmsr is equal
to 1 when the activated indexes of these vectors are exactly
the same. SDR is defined as

SDR = 10 log10
∥xtrue∥22
∥xtrue − x̂∥22

. (20)

These values were averaged over 100 trials.
For the combination of models 1 and 2, the parameters were

set to M = 32 and N = 64. The numbers of elements in both
groups, |G1| and |G2|, were 16. The activation locations of x
were randomly selected from n ∈ {1, · · · , N} with the pre-
determined number of activations. The value of each element
was generated by a Gaussian distribution with mean 0 and
variance 1.0. The dictionary matrix D ∈ RM |G1||G2|×N |G1||G2|

was generated so that the columns of D were correlated [15].
First, each element of the matrix D̄ ∈ RM |G1||G2|×N |G1||G2|

was generated by a Gaussian distribution. Second, D was
calculated as D = D̄W1/2 by multiplying by the matrix
W ∈ RN |G1||G2|×N |G1||G2|. The Toeplitz matrix W̄ ∈ RN×N ,
which is a block diagonal element of W, was obtained so that
the vector v ∈ RN is the first row of W̄. The nth element
of v, vn, is vn = ξn−1 + an, where an is from the vector
comprising a uniformly random sequence sorted in decreasing
order and ξ ∈ [0, 1] is a constant parameter used to determine
the correlation strength. Here, ξ was set to 0.9. In addition,
white Gaussian noise was added to y to obtain an signal-to-
noise ratio (SNR) of 40 dB.

Figure 3 shows the results of the sparse decomposition
performance. The horizontal axis denotes the number of activa-
tions in both figures. The F-measure and SDR for G-FOCUSS
were higher than those for M-FOCUSS. In the same manner,
those for G-SBL were higher than those for M-SBL. In all the
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Fig. 3. Results of sparse decomposition performance for combination of
models 1 and 2.

algorithms, the F-measure and SDR decreased as the number
of activations was increased. When G-SBL and G-FOCUSS
were compared, the F-measure for both methods was found to
be almost the same. The SDR for G-SBL was higher than that
for G-FOCUSS, particularly for a large number of activations.

For the combination of models 1 and 3, the parameters used
to set the size of the signals were the same as before. Again,
the dictionary matrix D ∈ RM |G1|×N |G1||G2| was generated so
that the columns of D were correlated. The parameter used to
determine the correlation strength ξ was 0.01.

The results for the combination of models 1 and 3 are
shown in Fig. 4. The F-measure and SDR were relatively
low compared with the results in Fig. 3. This is because the
observation vector is degenerated, which makes the sparse
decomposition difficult for a large number of activations. The
differences between the four algorithms had similar tendency
to those in Fig. 3. The F-measure and SDR for G-SBL and G-
FOCUSS were higher than those for M-SBL and M-FOCUSS,
respectively. The difference between G-SBL and G-FOCUSS
was not apparent, in contrast to that in Fig. 3.

B. Evaluation of sound field decomposition performance

Experiments to evaluate the performance for a sparse sound
field decomposition were conducted under the free-field as-
sumption. A linear array of omnidirectional microphones was
set along the x-axis with the center at the origin. Thirty-
two microphones were placed at intervals of 0.12 m. Static
point sources were located at (1.05, –0.8, 0.0) m and (–
0.35, –2.0, 0.0) m. The source signals were speech signals
of male and female utterances. The grid points were aligned
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Fig. 4. Results of sparse decomposition performance for combination of
models 1 and 3.

in a rectangular region of 3.8×3.4 m2 on the x-y plane
at z = 0. The numbers of grid points were 38 in the x-
direction and 17 in the y-direction with intervals of 0.1 m
and 0.2 m, respectively. The sampling frequency was 16 kHz.
The frame length of the short-term Fourier transform (STFT)
was 512 samples and its shift length was 128 samples. We
applied a combination of models 1 and 2 for multiple time
frames and temporal frequencies. Sixteen time frames were
clipped from the observed signals for use in model 1. White
Gaussian noise was added to obtain an SNR of 20 dB.

Figure 5 shows the distributions of x obtained by M-
SBL and G-SBL. The amplitudes of x averaged over the
frequencies and time frames are plotted in a dB scale. The
crosses represent the true source locations. In M-SBL, the
amplitude distribution was dispersed along the y-direction.
This is because the power of the source signal decreases at
several time frames and frequency bins. On the other hand,
in G-SBL, the sparsity of the amplitude distribution was
improved and the two true source locations were accurately
detected, although small errors can be seen at a few grid points.
Thus, the reconstruction accuracy may be improved using G-
SBL.

VI. CONCLUSION

A sparse sound field decomposition method using G-
SBL was proposed. We formulated a generative model of a
sound field as a sum of monopole source and plane wave
components. In addition, three different group sparse signal
models based on the physical properties of the sound field
were proposed. The SBL algorithm was extended to address
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Fig. 5. Results of sparse sound field decomposition. True source locations are
denoted by crosses.

the proposed signal models and to perform group sparse
decomposition. Numerical simulation results indicated that the
methods using the group sparsity can outperform the methods
used to solve the MMV problem. The performance of G-SBL
was slightly better than that of G-FOCUSS, particularly for a
large number of activations.
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