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Abstract—In this paper, we propose a novel contrast enhance-
ment algorithm for low light level images, which preserves image
details and color constancy based on Retinex. We decompose
an input low contrast image into luminance and chrominance
components in Lab color space, which reflects the perception
characteristics of human visual system well, and enhance the
luminance component only. We first estimate illumination using
adaptive bilateral filtering, which guarantees the available range
of reflectance by considering proper neighboring pixels according
to their luminance and color values. Then we enhance the
contrast of the estimated illumination image using parabola-
based tone mapping function. Finally, the enhanced luminance
and the original chrominance are combined together to yield
an enhanced color image. Experiment results show that the
proposed algorithm enhances image details and edge structures
by alleviating halo artifacts, and also preserves naturalness
faithfully by avoiding color shifting artifacts.

I. INTRODUCTION

Contrast enhancement is one of the traditional research
topics of image processing, which increase the contrast of
input degraded images such as low light level images, high
dynamic range images, and foggy or hazy images. Retinex
theory was first proposed by Land et al. [1], and has been
widely used for contrast enhancement. In Retinex theory, the
perceived image intensity is assumed to be the product of scene
reflectance and illumination. Jobson et al. proposed single-
scale Retinex (SSR) algorithm [2] where the illumination of
an input image is estimated as a Gaussian filtered image.
However, due to the smoothing nature of Gaussian filtering,
resulting enhanced images often yield color shifting artifacts
as well as halo artifacts in the vicinity of edges.

To alleviate these artifacts in SSR algorithm, modified
Retinex algorithms were proposed [3], [4]. Kimmel et al. [5]
addressed the color shifting problem by using the HSV color
space. Specifically, they enhanced the V channel only and
preserved H and S channels. Elad [6] adopted a bilateral filter
instead of the Gaussian filter to estimate the illumination to
avoid halo artifact. Meylan [7] applied principle component
analysis to an input color image, and obtained luminance by
taking the first principle component and obtained chrominance
by the second and third components, respectively, where only
the luminance is processed for enhancement. Choi et al. [8]
also enhanced V channel for preserving color constancy,
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and presented a image formation model as the product of
global illumination, local illumination, and reflectance. The
local illumination is estimated by using JND (just noticeable
difference)-based nonlinear low-pass filtering to reduce halo
artifact. Shen and Hwang [9] also used HSV color space
for color constancy, and developed a smoothing filter by
optimizing a cost function to reduce halo artifact.

These Retinex-based algorithms enhance the details of input
low contrast images effectively, however, often result in un-
natural images, where overall color temperatures are severely
changed and/or additional light sources are generated. Chen el
al. [10] increased the contrast of input images while preserving
naturalness of colors. Li el al. [11] enhanced the reflectance as
well as illumination to preserve natural colors. Wang et al. [12]
balanced the details and naturalness in resulting images by
processing reflectance and illumination together using bright
pass filter and bi-log transformation.

In this paper, we enhance the contrast of low light level
images while preserving color constancy based on Retinex.
We first employ Lab color space to represent an input image
by luminance and chrominance components. Then we enhance
the low contrast luminance only and preserve the original
chrominance. We estimate illumination by applying adaptive
bilateral filtering which considers proper neighboring pixels
according to their luminance and color values. We also in-
crease the intensity of estimated illumination adaptively using
parabola-based tone mapping curve. Finally the enhanced L
channel image is combined with the original a and b channel
images, which are then transformed to RGB color space.
Experimental results demonstrate that the proposed algorithm
preserves image details and color constancy faithfully, while
improving the contrast of low light level images.

The rest of the paper is organized as follows. Section II
briefly reviews the Retinex-based enhancement algorithms.
Section III describes the proposed low light level image
enhancement algorithm, and Section IV shows experimental
results. Section V concludes the paper.

II. RETINEX-BASED CONTRAST ENHANCEMENT

Retinex theory [1] assumes that an image intensity I is rep-
resented by the product of scene reflectance R and illumination
L, given by

I(x, y) = R(x, y) · L(x, y). (1)

In SSR algorithm [2], the illumination is estimated by
convolving a Gaussian filter with an input image, and the
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resulting scene reflectance RSSR is obtained in log-scale.

RSSR(x, y) = log I(x, y)− log{F (x, y) ∗ I(x, y)}, (2)

where F (x, y) is a normalized Gaussian surround function [2],
given by

F (x, y) = K · exp
(
−x

2 + y2

c2

)
. (3)

K is a normalization parameter satisfying
∑

x

∑
y F (x, y) =

1. When c becomes large, halo artifact becomes severe around
high intensity pixels.

To reduce halo artifact of SSR algorithm, multi-scale
Retinex (MSR) algorithm [3] was proposed, which yields
scene reflectance RMSR as a weighted sum of SSR results
at multiple image scales.

RMSR(x, y) =
N∑

n=1

wn ·RSSR,n(x, y), (4)

where N is the number of image scales, and wn and RSSR,n

denote a weighting parameter and the scene reflectance ob-
tained by SSR at the n-th scale, respectively.

Moreover, to alleviate color shifting artifact of MSR algo-
rithm, MSR color restoration (MSRCR) algorithm [4] was also
proposed. The output reflectance RMSRCR is obtained by per-
forming color restoration function to the resulting reflectance
of MSR, given by

RMSRCR(x, y) = H(x, y) ·RMSR(x, y) (5)

where H(x, y) is a color restoration function.

III. PROPOSED ALGORITHM

A. Lab Color Space

The conventional Retinex-based image enhancement algo-
rithms convert RGB colors into other space such as HSV or
YCbCr, and process the luminance channel using Retinex.
However, in HSV and YCbCr color spaces, when the lumi-
nance is changed, the related chrominance values are also
changed accordingly. Moreover, the amount of color difference
is not exactly same to that of perceived difference by human
visual system (HVS). In contrary, Lab color space changes
the luminance and chrominance values independently and
reflects HVS more faithfully [13]. Therefore, we employ Lab
color space and perform Retinex-based enhancement to the
luminance channel only. We also preserve the original color
information in chrominance channels to avoid color shifting
artifacts.

B. Illumination Estimation

According to the Retinex theory [1], we also represent
the observed intensity of L channel luminance image as the
product of the related reflectance and illumination.

Ilum(x, y) = Rlum(x, y) · Llum(x, y) (6)

where Ilum(x, y), Rlum(x, y), and Llum(x, y) denote the in-
tensity, reflectance, and illumination, respectively, at the pixel

position (x, y) in L channel image. Note that, since the
reflectance is normalized into [0, 1], Ilum(x, y) ≤ Llum(x, y).

The conventional Retinex-based algorithms estimate the
illumination by performing convolution on an input image with
smoothing filters, such as the Gaussian [4], [8] and bilateral
filters [6], and guided filters [14]. The Gaussian filter computes
an average pixel value, and thus often causes halo artifacts. In
contrary, bilateral filter [15] can preserve the edges in an input
image, and alleviate halo artifacts efficiently.

Note that, the conventional bilateral filtering assigns a higher
weight to a neighboring pixel, which is geometrically closer
and has a more similar pixel value to a given target pixel.
However, at some target pixels, estimated illumination values
can be even smaller than the observed intensity values due to
the smoothing nature of bilateral filter, which results in invalid
reflectance values larger than 1. In such cases, it is additional
required to normalize or clip the range of reflectance values,
which may yield smoothed pixel values in enhanced images.

Therefore, we employ the bilateral filtering adaptively in
order to guarantee the available range of reflectance. To be
specific, among the neighboring pixels to a given target pixel,
we only consider the pixels which have similar colors to the
target pixel and larger luminance values than the target pixel.
Let P(x, y) denote the set of neighboring pixels to the pixel
(x, y). We obtain the set of pixels, S(x, y), by selecting the
pixels (u, v)’s from P(x, y) which have similar colors to the
pixel (x, y) and larger luminance values than the pixel (x, y).

S(x, y) = {(u, v)|(u, v) ∈ P(x, y), Ilum(u, v) > Ilum(x, y),

d(x,y)(u, v) < τ
}

(7)

where the chrominance distance d(x,y)(u, v) between (x, y)
and (u, v) is computed as

d(x,y)(u, v) =
√

(Ia(x, y)− Ia(u, v))2 + (Ib(x, y)− Ib(u, v))2
(8)

where Ia and Ib are a and b channel images in Lab color
space, and τ is a given threshold which is empirically set as
τ = 10.

Then we estimate the illumination value at the pixel (x, y)
as

L̂lum(x, y) =

∑
(u,v)∈S(x,y) Fgeo(u, v) · Fint(u, v) · Ilum(u, v)∑

(u,v)∈S(x,y) Fgeo(u, v) · Fint(u, v)
,

(9)
where Fgeo(u, v) and Fint(u, v) reflect the geometric similarity
and intensity similarity in bilateral filtering.

Fgeo(u, v)=
1

2πσ2
1

exp

(
− (x− u)2 + (y − v)2

2σ2
1

)
,

Fint(u, v)=
1

2πσ2
2

exp

(
− (Ilum(x, y)− Ilum(u, v))2

2σ2
2

)
, (10)

where we set σ1 = 3 and σ2 = 5, respectively.
Note that the original bilateral filtering is implemented by

replacing S(x, y) with P(x, y) in the above equation (9). Since
we only consider the neighboring pixels which have larger
luminance values than a target pixel, we can guarantee that the
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Fig. 1. Parabola-based tone mapping. (a) Intensity transfer functions, (b)
cumulative density functions of intensity values, and the corresponding images
(c) before and (d) after tone mapping.

resulting estimated reflectance values lie within the available
range of [0, 1] according to (6). Moreover, we can further
preserve the details and edge structures in an input image by
only consider the neighboring pixels having similar colors to
the target pixel.

We can obtain reflectance from (6) as

Rlum(x, y) =
Ilum(x, y)

L̂lum(x, y)
. (11)

C. Tone Mapping

We enhance the contrast of input image by improving
the dynamic range of intensity histogram of the estimated
illumination image L̂lum. Traditional histogram equalization
or cumulative density function (CDF) matching [12] can be
used to this end, however, these methods often result in
unnatural images since populated similar intensity values may
be changed quite differently.

In this work, we employ a parabola-based tone mapping
curve. As shown in the transfer function domain in Fig. 1(a),
we define a red parabola curve on the blue line with the 45◦

slope, whose vertex is deviates from the blue line up to |λ|.
Thus the parabola curve has relatively steep slopes for low
intensity values and slowly changes for high intensity values.
We adaptively find a proper parabola curve to an input image,
by computing λ as

λ =

∫ 100

0

Till(z)− Tunif(z) dz (12)

where Till(z) is the CDF of L̂lum(x, y)
3 values and Tunif(z)

is the CDF of uniform distribution, respectively. Note that the

Fig. 2. Contrast enhancement results on ‘Woman’ image: (a) Input low contrast
image, and the enhanced images by (b) [12] and (c) the proposed algorithm,
respectively. The proposed algorithm preserves the details of the hair region
faithfully.

integration range is [0, 100], since we consider the L channel
in Lab color space.

We transform the initially estimated illumination values
of L̂lum(x, y) into a new one L̃lum(x, y) according to the
computed parabola-based tone mapping curve. If λ becomes
positive, it means that an input image is a low light level
image, and thus we increase the intensity values by parabola-
based transfer function, and vice versa. Moreover, the absolute
value of |λ| controls the level of enhancement: larger |λ|
changes intensity more severely. In addition, to preserve the
order of pixel values in the resulting image, we make |λ| not to
exceed a threshold µ, which is set to 35.3 empirically. Fig. 1(b)
compares the CDFs of L̂lum(x, y)’s (before tone mapping) and
L̃lum(x, y)’s (after tone mapping) corresponding to the images
shown in Figs. 1(c) and (d), respectively. We see that the
resulting illumination becomes brighter and exhibits a wider
dynamic range of intensity values than initially estimated one.

Finally, we obtain an enhanced luminance image Ĩlum by
using the computed reflectance Rlum in (11) and the enhanced
illumination L̃lum.

Ĩlum(x, y) = Rlum(x, y) · L̃lum(x, y). (13)

We combine the enhanced luminance Ĩlum and the original
chrominance components of Ia and Ib together, which are then
transformed into RGB color space.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm
compared with that of Wang et al.’s algorithm [12], on the
three test low light level images: ‘Woman’ in Fig. 2(a), ‘Man’
in Fig. 3(a), and ‘Dog’ in Fig. 4(a), respectively.

In Fig. 2, the hair region is associated with compact dis-
tribution of low intensity values, and thus becomes blurred
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Fig. 3. Contrast enhancement results on ‘Man’ image: (a) Input low contrast
image, and the enhanced images by (b) [12] and (c) the proposed algorithm, re-
spectively. The proposed algorithm preserves naturalness and color constancy
in the tree region.

Fig. 4. Contrast enhancement results on ‘Dog’ image: (a) Input low contrast
image, and the enhanced images by (b) [12] and (c) the proposed algorithm,
respectively. The proposed algorithm preserves naturalness in the shadow
region.

and unnatural in the Wang et al.’s algorithm as shown in
Fig. 2(b). However, as shown in Fig. 2(c), the proposed
algorithm preserves the details of hair region by adaptively
selecting neighboring pixels for bilateral filtering. Similarly,
while the Wang et al.’s algorithm distorts the colors of trees
as shown in Fig. 3(b), the proposed algorithm preserves color
constancy in the tree region and yields a natural result as
shown in Fig. 3(c). Also, we observe that the shadow region
exhibit largely different brightness values in the Wang et
al.’s algorithm as shown in Fig. 4(b), however, the proposed
algorithm alleviates this artifact and preserves the natrualness
of dark shadow region as shown in Fig. 4(c).

The experimental results show that the proposed contrast
enhancement algorithm can preserve color constancy and
naturalness in the resulting images, since it adaptively applies
the bilateral filtering and changes the pixel values according
to an optimally selected parabola-based tone mapping curve.

V. CONCLUSIONS

In this work, we proposed a Retinex-based image contrast
enhancement algorithm to preserve color constancy. We first
decomposed an input image into luminance and chrominance
components using Lab color space. Then we estimated the
illumination by applying bilateral filtering adaptively accord-
ing to the color similarity and luminance distribution among
neighboring pixels. Moreover, we improved the contrast of
luminance image by performing parabola-based tone mapping
to the estimated illumination image. Finally, we generated
an enhanced color image by combining the enhanced lu-
minance and the original chrominance together. Experiment
results demonstrated that the proposed algorithm enhances the
contrast of input low contrast images, while preserving image
details and natural colors faithfully. However, when an input
image has a very low light level, the proposed algorithm often
yields an over-enhanced result. We will address this problem
as a future work.
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