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Abstract—In the actual wireless communication system-
s, non-Gaussian noise often has a negative effect on the
signals which cognitive users finally receive. In addition,
due to the high frequency of collecting samples, there may
be a certain correlation among the noise components. A
detection method based on fractional lower order mo-
ments (FLOM) is applied in this paper to solve spectrum
sensing in weakly correlated Laplace distributed noise
environment. Different from the traditional detector, this
detector does not require the priori knowledge of the
primary user signal, noise and communication channels.
By computer simulating, the detection performance versus
the signal-to-noise ratio, the scale parameter b, the order
p and the correlation parameter τ are studied both in
non-fading communication channel and Rayleigh fading
communication channel in this paper with the compari-
son to the traditional energy detector. Simulation results
show that, in the weakly correlated Laplace distributed
noise environment, the FLOM-based detector has better
performance than the traditional energy detector.

I. INTRODUCTION

Wireless spectrum is the key to achieve wireless
communication. In recent years, with the rapid devel-
opment of wireless communication, the demand for the
wireless spectrum is growing. However, the wireless
spectrum resources cannot be utilized efficiently due to
the traditional fixed allocation principle [1]. Therefore,
cognitive radio (CR) is proposed to alleviate the shortage
of radio spectrum resources and improve the utilization
rate of spectrum [2][3].

Spectrum sensing is the most critical technology
in cognitive radios. Cognitive users (CU) detect the
spectrum holes by observing the change of the com-
munication environment intelligently. Cognitive users
can access to use the spectrum as soon as they find
the spectrum holes. However, once the CUs detect the
existence of the primary users(PU) again, they must
quit within a specified time to avoid communication
interference to the primary users.

In the actual wireless communication systems, non-

Gaussian noise often has a negative effect on the signals
which cognitive users finally receive. Besides, the noise
components could be correlated when the sampling
frequency gets higher and higher. In this case, the
detection performance of the traditional signal detectors
(such as energy detector, which is based on second
order statistics) will be degraded or even failed. In
the literature [4], the locally optimal detector was put
forward to detect the PU signal in weakly correlated
noise. But this detector needs to require the noise distri-
bution which is usually difficult to be known in advance.
The optimal detector based on generalized likelihood
ratio test was proposed in the literature [5] to detect
the PU signal in non-Gaussian noise. However, this
detector needs to make maximum likelihood estimation
both in both H0 and H1 hypotheses which requires
a great deal of complex calculation. Compared to the
GLRT detector, Rao test based detector in the literature
[6] only needs to estimate unknown parameters in H0

hypothesis which means less calculation. However, these
two detectors only assume all the noise is independent.
Thus, it is significant and valuable to research how to
detect primary users efficiently without suffering from
communication interference in weakly correlated non-
Gaussian noise environment.

In this paper, a statistical method based on fraction-
al lower order moments (FLOM) is applied to solve
spectrum sensing in weakly correlated non-Gaussian
noise environment. One of the highlighted advantages of
FLOM detector is that there is no need to obtain a priori
knowledge of the primary user signal, the noise and the
communication channel. FLOM detector was proposed
in the literature [7] to solve spectrum sensing in α-
stable distributed noise. But it was limited to indepen-
dent α-stable distributed noise. According to numerous
simulations, we find FLOM detector can also achieve
good detection performance in other uncorrelated or
weakly correlated Non-Gaussian noise. Non-Gaussian
noise is usually modeled as generalized Gaussian dis-
tribution (GGD), mixed Gaussian distribution (MGD)
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and alpha stable distribution, etc. In this paper, the
non-Gaussian noise is modeled as Laplace distribution
which is one of the most typical distribution in GGD.
That is because this distribution can simulate the actual
noises with different degrees of tailing by adjusting
the scale parameter values. Correlated noise is usually
modeled as ϕ-mixed noise model [8], m-correlated noise
model [9] and transformed noise model [10]. When the
noise components are weakly correlated, independent
random process of first order moving average (First-
Order Moving Average, FOMA) value is often used to
simulate the weak correlation noise model [11][12].

The reminder of this paper is organized as follows:
in section II, the system model is introduced. The FLOM
statistic is derived under weakly correlated Laplace
noises in section III. Simulation results and performance
analysis are presented in section IV. At last, conclusions
of the paper are shown in section V.

II. PROBLEM FORMULATION

A. System Model

Here we assume that a cognitive radio network is
composed of a primary user, M cognitive users and a
fusion center. In the wireless channel, each cognitive
user detects the primary user signal within a specified
time interval. Then spectrum sensing problem can be
formulated into the two hypotheses test model: H0 and
H1. H0 represents there is no primary user and H1

represents the primary user exists. The length of samples
is N under two hypotheses. The spectrum sensing model
is as follows:{

H0 : zm(n) = wm(n)
H1 : zm(n) = hms(n) + wm(n)

(1)

In equation (1), zm(n) is the observed value of the m-th
cognitive user at the n-th moment. wm(n) is background
non-Gaussian noise under two hypotheses. And in the
paper, wm(n) is modeled as weakly correlated Laplace
distribution. s(n) is the PU signal at n-th moment
with zero mean and variance σ2

s = E[|s(n)|2]. hm is
the channel gain under both non-fading channel and
Rayleigh fading channel. hm is equal to one under
non-fading channel. Under Rayleigh fading channel,
the mean of hm is zero, and the variance is σ2

hm
=

E[|hm|2]. The probability density function (PDF) of
Rayleigh distribution hm is

f(hm) =
hm
σ2
hm

∗ e
− hm

2σ2
hm . (2)

III. SPECTRUM SENSING BASED ON FLOM UNDER
WEAKLY CORRELATED LAPLACE NOISES

A. Noise model

1) weak correlation model: In the paper, indepen-
dent random process of first order moving average
(First-Order Moving Average, FOMA) value is used to

Fig. 1. PDF of Laplace Distribution with different scale parameter
b and µ = 0

simulate the weak correlation noise model. The noise
sequence {w(n)}Nn=1 is denoted as follows:{

w(1) = e(1)
w(n) = e(n) + τe(n− 1) for n ∈ [2, N ]

(3)

In equation (3), e(n) is subjected to independent Laplace
distribution, τ is the correlation coefficient and |τ | < 1
.

2) Laplace distribution model: Laplace distribution
is a continuous probability distribution and its probabili-
ty density function is expressed by the absolute value of
the difference with respect to the mean value. The PDF
of the random variable e(n) in (3) can be expressed as

f(e(n)|µ, b) = 1

2b
e−
|e(n)−µ|

b (4)

In equation (4), µ is the location parameter, b is the
scale parameter and its value is always positive. Fig. 1
is the PDF figure of the Laplace distribution. It can be
seen that by varying the scale parameter b, different tail
behaviours can be obtained. The higher the value of b
is, the more slowly the tail decays when the location
parameter is fixed. Therefore, with the heavy tail, the
Laplace can be used to fit the non-Gaussian noise in
practical CR system. In non-Gaussian noise, spectrum
sensing needs to account for these large magnitude
samples with heavy tail to reduce the probability of false
alarm.

A good detector for weakly correlated non-Gaussian
noise usually utilizes the nonlinear method to reduce the
noise spikes. As will be seen below for FLOM-based
detector.

B. Spectrum sensing based on FLOM

According to the characteristics of Laplace distri-
bution, the traditional Lp paradigm algorithm [13] is
extended to fractional lower order moments, and the
method based on FLOM is studied. M cognitive users
transmit the received signals to the fusion center, and
the fusion center based on the fractional lower order
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Fig. 2. ROC curve with different orders p under non-fading channel

Fig. 3. ROC curve with different orders p under Rayleigh fading
channel

moments obtains the suboptimal perceptual statistics as
follows:

Yflom =
1

MN

M∑
m=1

N∑
n=1

|zm(n)|p(m) for p ∈ (0, 2)

(5)
It can be seen from (5) that FLOM statistics only
needs the observed signal zm(n) and the order p with-
out the knowledge of the primary user signal or the
non-Gaussian noise PDF. Therefore, it can effective-
ly achieve spectrum sensing under weakly correlated
Laplace noise with unknown prior knowledge of primary
user signal and noise. When the value of Yflom is calcu-
lated, we compare Yflom with the specific threshold η to
determine whether the primary user exists. If Yflom > η,
it means the PU signal exists. If Yflom < η, it means
the PU signal does not exist.

IV. SIMULATION RESULTS AND PERFORMANCE
ANALYSIS

This section is the simulation results under both
non-fading channel and Rayleigh fading channel. In
following simulations, the length of observed signal
sequence is 500 and Monte Carlo runs 1000 times.

Fig. 2 and Fig. 3 are the diagrams of the detection

Fig. 4. Diagram of different detection probabilities with different
orders p under non-fading channel

Fig. 5. ROC curve with different scale parameters b under non-fading
channel

probability and false alarm probability with different
orders p ( p = 0.2, 1, 1.5, 2 ) with the condition of
SNR = −8dB, b = 1/

√
2, τ = 0.1, M = 1 under

both non-fading channel and Rayleigh fading channel.
It can be seen that when the order p decreases, the de-
tection probability increases, which means the detection
performance gets better. In particular, when p is equal
to 2, it is the traditional energy detector. It is clear from
figures that the detection performance of FLOM detector
is better than that of the traditional energy detector. For
example, in Fig. 2, the detection probability of FLOM
detector is approximately 98% when the false alarm
probability is equal to 0.1 and the order p is equal to 0.2.
However, when the false alarm probability is equal to 0.1
and the order p is equal to 2, the detection probability
of energy detector is approximately 60%. Notice that
for FLOM detector, the range of p is (0,2). We also do
the simulations when p is smaller than 0.2, as shown
in Fig. 4. From the simulation results, we find that the
detection performance gets much better if the value of p
is more close to 0. Here the order cannot be 0 because
when p is equal to 0, the value of Yflom is equal to 1,
which means the detector will be failed.

Fig. 5 and Fig. 6 are the diagrams of the detection
probability and false alarm probability with different
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Fig. 6. ROC curve with different scale parameters b under Rayleigh
fading channel

Fig. 7. ROC curve with different SNR under non-fading channel

scale parameters b (b = 0.5/
√
2, 1/

√
2, 1.5/

√
2, 3/

√
2)

with the condition of SNR = −8dB, p = 0.4, τ = 0.1,
M = 1 under both non-fading channel and Rayleigh
fading channel. Here, σ is standard deviation and the
relation between the scale parameter and the standard
deviation is that b = σ/

√
2. We can see that the higher

the scale parameter b, the lower the detection probability.
That is because when the scale parameter b increases, the
tailing of the Laplace noise gets heavier, which will be
more likely to cause false alarm and lead to the decline
in detection performance.

Fig. 7 and Fig. 8 are the diagrams of the detection
probability and false alarm probability with different
SNR (SNR = 0dB,−5dB,−10dB,−15dB) with the
condition of b = 1/

√
2, p = 0.4, τ = 0.1, M = 1 under

both non-fading channel and Rayleigh fading channel.
As can be seen from figures, with the decrease of
the SNR, the detection performance is declining. In
Fig. 7, when the false alarm probability is equal to 0.1,
SNR = −5dB, the corresponding detection probability
is 100%, but when the false alarm probability is equal
to 0.1, the signal to noise ratio of SNR = −15dB,
the corresponding detection probability is 38%, the
detection probability is decreased by about 60%. This is
because when the SNR is lower, the noise environment
gets worse, which means it is more difficult to detect

Fig. 8. ROC curve with different SNR under Rayleigh fading
channel

Fig. 9. ROC curve with different correlation parameters under non-
fading channel

primary user signal.

Fig. 9 and Fig. 10 are the diagrams of the detection
probability and false alarm probability with different
correlation parameters τ (τ=0.1, 0.5, 0.9) with the
condition of b = 1/

√
2, p = 0.4, SNR = −8dB,

M = 1 under both non-fading channel and Rayleigh
fading channel. As can be seen from figures, when the

Fig. 10. ROC curve with different correlation parameters under
Rayleigh fading channel
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correlation coefficient is smaller, the detection perfor-
mance based on fractional lower order moment detector
gets better.

V. CONCLUSION

In this paper, a new algorithm based on FLOM is
used to detect the primary user signal under weakly
correlated Laplace noise. The detector based on frac-
tional lower order moments does not require a priori
knowledge about the primary user signal, noises and
communication channels. We investigate the detection
performance with different parameters (SNR, the mo-
ment p, scale parameter, correlation coefficient) under
both non-fading channel and Rayleigh fading channel by
Monte Carlo simulation. Simulation results show that,
whether it is under non-fading channel or Rayleigh fad-
ing channel, the detection performance of the detector
based on fractional lower order moments is significantly
higher than the conventional energy detector in weakly
correlated Laplace noise environment.
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