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Abstract—Procedural textures have been widely used as they
can be easily generated from various mathematical models. How-
ever, the model parameters are not perceptually meaningful or
uniform for non-expert users; therefore it is difficult for general
users to obtain a desired texture by tuning the parameters.
In order to satisfy users’ requirement, we propose a novel
procedural texture retrieval scheme that can return textures
according to commonly used perceptual dimensions. We establish
a procedural texture database that includes abundant textures
so as to meet the diverse demands of users. All textures in the
database are projected into a perceptual space after we construct
the mapping model. First, we investigate the salient features of the
input texture; then we calculate the Euclidean distance between
the input texture and each texture in the database. Experimental
results show that our method can effectively retrieve textures
that are perceptually consistent with users’ input.

I. INTRODUCTION

Procedural models have been widely used in the field of
computer graphics for generating procedural textures. How-
ever, procedural models are defined by mathematical algo-
rithms [9]; therefore it is difficult to determine the parameters
of procedural models to generate desired textures, even for
experienced users. For tackling this challenge, we interpret
the problem as a retrieval task, i.e., for a given texture, we
would like to find procedural textures which are similar to the
example in terms of visual perception.

A typical content-based image retrieval (CBIR) consists of
two major parts, feature extraction and similarity measure-
ment. First, a set of features are extracted to represent the
content of each image; second, a distance measure between
features of the query image and each image in the database is
calculated so that the most similar image is retrieved. However,
the features are typically low-level features, and similarity
measurement based on these features always leads to results
that may be quite different from human perception.

To describe textures, humans usually use perceptual fea-
tures, such as “directional”, “repetitive” and “structural” [8].
In addition, similar textures substantially have the same salient
perceptual features in common among them. Thus, texture
retrieval schemes based on perceptual features may yield bet-
ter retrieval performance. Moreover, similarity measurement
based on perceptual features makes the retrieval process more
efficient.

In this paper, we investigate two problems as mentioned
above. A procedural texture retrieval scheme based on percep-
tual features is proposed, which may find textures perceptually

similar to the example. The highlights of this paper are as
follows, (1) representative features are learned by a deep
neural network-PCANet efficiently; and the features are used
to train mapping models for predicting perceptual scales of
the query texture; (2) the prominent perceptual features of
the query texture can be determined automatically, which
are consistent with human perception; (3) a novel perceptual
texture retrieval scheme is proposed, which can find textures
that are perceptually similar to the query texture, and the
proposed scheme supports a variety of procedural models.

II. RELATED WORKS

As more visual information is stored in digital format, image
databases are becoming more and more popular. In particular,
procedural textures have been widely used in many fields.
There exist many texture databases which usually contain
abundant textures. A texture database is supposed to provide
a simple and timely manner for users to interact with the
database. Therefore an efficient CBIR [10] scheme becomes
an essential ingredient of a meaningful texture database.

For texture representation, a variety of features have been
proposed, e.g., local binary pattern (LBP) [11] and wavelet-
like features [3] [7], which are the most popular features
used in retrieval systems. Meanwhile, deep neural networks
have behaved more powerful in recent years [4]. Recently,
a principle component analysis network (PCANet) [1] has
been applied in texture classification and object recognition,
and achieved great performance success, while requiring much
less computation compared to other state-of-the-art deep learn-
ing approaches. PCANet simplifies the procedure to learn
the convolutional filters, meanwhile, it retains the hierarchi-
cal architecture of traditional convolutional neural networks
(CNNs) [5] [2]. However, these computational features have
no direct relation to human perception even though they are
representative and discriminative. What’s more, these com-
putational features are always high-dimensional. Similarity
measurement based on these computational features might be
time consuming, and derive results that depart from human
perception. We jointly consider the feature extraction and sim-
ilarity measurement, and build a mapping from computational
features to perceptual features.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 897 APSIPA ASC 2015



Query Texture Perceptual 
Features

Prominent 
Perceptual 
Features

Texture 
Database

Sort Textures in 
Ascending 
Order

The Nearest N 
Textures as the 

Results

Calculate 
Euclidean 
Distance

Corresponding 
Perceptual 
Features

Fig. 1. The architecture of the proposed retrieval scheme.

III. THE PROPOSED TEXTURE RETRIEVAL SCHEME

The overall architecture of the texture retrieval scheme is
illustrated in Fig. 1. The retrieval scheme consists of two
steps. First, we investigate the prominent perceptual features of
the query texture. The prominent perceptual features indicate
several visual properties particularly perceived by humans at
the pre-attentive level of texture perception.

Second, the prominent feature space is constructed. The
dimensions of the space are determined by the number of the
prominent perceptual features of the query texture. Then, we
search the nearest neighbours to the query texture by using
the Euclidean distance in the prominent feature space.

A. Extraction of computational features

In our retrieval scheme, we employ a deep neural network-
PCANet to learn features from the training textures. PCANet
is a variant of traditional deep convolutional neural networks.
It has achieved great success in texture classification and
object detection. Different from CNNs, PCANet fascinates by
its simplified structure and efficient training procedure. The
network consists of cascaded feature extraction stages and
a non-linear output stage. For each feature extraction stage,
principle component analysis (PCA) is applied to calculate
the convolutional filters. Several feature extraction stages are
concatenated to form a deep network, in which the outputs of
preceding extraction stage are propagated as the inputs of the
posterior stage. The non-linear output stage is implemented by
a binary hashing process and histogram statistics. Benefiting
from the unsupervised training process and the efficiency of
PCA, PCANet learns features more quickly than conventional
deep networks. Taking into consideration of all of the above
mentioned aspects, we have PCANet employed in our method
to extract computational features for each texture in our
database.

B. Mapping Computational Features to Perceptual Features

Given a query texture, the key issue is how to predict the
perceptual features. A set of perceptual features that contains
12 perceptual properties 1 defined in [8] is used in our scheme.

Since the computational features of each texture in our
database have been extracted, we can train the mapping
models from computational features to perceptual features.

1The features are, in order, contrast, repetition, granularity, randomness,
roughness, feature density, directionality, structural complexity, coarseness,
regularity, locally orientation and uniformity.

Because the perceptual features are psychometric scales used
to measure the extent of certain visual perceptual properties
belonging to a sample, we believe that the scales for each
perceptual feature of a sample can also be regarded as a
class label. That is to say texture samples can be classified
according to their perceptual scales. The task of mapping
is then transformed to classification tasks. For one certain
perceptual feature, we can classify the texture samples to
nine clusters according to their perceptual scales. Support
vector machine (SVM) is employed for classification with
computational features as the training data and perceptual
scales as the class labels. A total of 12 classifiers are trained
and each classifier is responsible for a perceptual feature
mapping task. Afterwards, we can predict the perceptual scales
for each input texture. The overall structure of the mapping
model is illustrated in Fig. 2.

C. Identifying Prominent Perceptual Features

Prominent perceptual features of the query texture are
defined as perceptual features whose scales are larger than a
threshold. We assume that each texture possesses no more than
five prominent perceptual features. For each texture, if there
are more than five perceptual features whose scales are larger
than the threshold, we increase the threshold by one at a time
until the number of perceptual features whose scales are above
the threshold is no more than five. In this way, prominent
perceptual features are determined and coincide with human
perception.

IV. EXPERIMENTS AND RESULTS

A. Datasets

The training data we used is the same as in [6] [13],
which contains 450 surface textures of size 512× 512 pixels
and corresponding perceptual scales. The surface textures in
the dataset were generated by twenty three representative
procedural models. The details of these procedural models
can be found in [6]. We cropped each texture into 4 non-
overlapping sub-images of size 256 × 256 pixels, which
resulted in a total of 1800 texture samples. Because samples in
our database were isotropic textures, we believed that the sub-
images had the same perceptual scales as the original texture.
The cropping operation increased training samples, which
improved the accuracy of the mapping model, meanwhile, the
training process was accelerated by the reduced dimensions.

We further enlarged the database by generating more tex-
tures by varying parameters for the 23 procedural models.
In the end, 31150 additional textures were generated. The
appearance of these textures varied in visual properties, e,g.,
contrast, repetitiveness, roughness and so on. Each texture was
rendered using Luxrender [12] under the same area lighting
conditions and diffuses reflectance as in [6]. Some examples
of the surface textures are shown in Fig. 3. We cropped each
of the 31150 new produced textures into four non-overlapping
sub-images as mentioned before, which produced 124600 tex-
tures. It was impossible to obtain the perceptual scales for each
texture in such a large database by psychophysical experiment,
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Fig. 2. Procedure for predicting the perceptual features of additional surface textures.

Fig. 3. Ten examples of surface textures.

so the perceptual scales of the new 124600 samples were
approximately predicted by the mapping models. Finally our
database extended to 126400 procedural textures, and each of
them owned its perceptual scales.

B. Retrieval Results

First, we evaluate the performance of the mapping models.
We used 1800 textures and their perceptual scales to train
the mapping models. The validation set contained 450 surface
textures randomly chosen from the 1800 textures. The rest of
the textures were used as the training set. The parameters of
PCANet were chosen by validation. We had demonstrated that
two-stage PCANet was in general sufficient to achieve good
performance. Thus, in our experiments, two-stage PCANet
architecture was employed. After validation, in PCANet, the

filter size was k1 = k2 = 5, the number of filters L1 =
L2 = 8, and block size 64× 64. Since we had found the best
configuration, we trained PCANet and the 12 classifiers using
all the 1800 samples including the training and validation set.
Table I summarizes the classification accuracies.

Classification results based on PCANet features suggest that
we can predict perceptual scales of each texture in our database
accurately.

TABLE I
COMPARISON OF ACCURACY(%) AMONG LBP, GABOR, GABOR+LBP,

AND PCANET FEATURES FOR DIFFERENT PERCEPTUAL FEATURE
PREDICTION TASK.

Perceptual Features Accuracy(%)
LBP Gabor Gabor+LBP PCANet

contrast 87.99 91.91 92.72 97.33
repetitive 85.70 86.44 89.38 97.45
granular 82.11 85.95 87.99 97.10
random 87.58 87.99 90.77 97.15
rough 87.09 87.83 91.42 97.45

feature density 87.01 90.28 92.16 97.51
direction 87.66 90.93 93.14 97.98

structural complexity 84.86 86.44 89.95 96.28
coarse 88.07 88.89 90.93 95.92
regular 85.29 88.15 91.42 97.82
oriented 86.93 90.11 92.97 97.38
uniform 86.52 89.46 91.09 96.82
average 86.40 88.70 91.16 97.18

Second, we evaluated the performance of the retrieval
scheme. Given a procedural texture, we predicted its percep-
tual scales and investigated its prominent perceptual features.
After constructing the prominent perceptual feature space, we
calculated the Euclidean distance between the query and each
texture in our database and took the top N closest textures
as the retrieval results. Fig. 4 illustrates some of the results
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Fig. 4. Results of the retrieval scheme based on perceptual features. In the
same row, texture on the left is the query and textures on the right are
corresponding results arrayed in ascending order by their distances to the
query.
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Fig. 5. Retrieval results by using Gabor features. In the same row, texture
on the left is the query and textures on the right are corresponding results
arrayed in ascending order by their distances to the query.

of our retrieval scheme. We made N = 5 here to implement
the retrieval process. It is obvious that most of the results are
perceptually consistent with the queries. We also compared
the results to that achieved by using Gabor features. The
retrieval results by using Gabor features are shown in Fig.
5, in which the same textures are used as the queries. We
can see that the retrieved textures by using Gabor features
have similar pixel distributions over space, but they depart
from human perception. Only random textures can be retrieved
precisely by using Gabor features. These results demonstrate

TABLE II
PREDICTED PERCEPTUAL FEATURES OF INPUT SURFACE TEXTURES.

SCALES IN BOLD CORRESPOND TO PROMINENT PERCEPTUAL FEATURES
OF GIVEN TEXTURES.

Perceptual Features Scales
Texture 1 Texture 2 Texture 3

contrast 3 7 5
repetitive 4 8 4
granular 3 3 2
random 6 2 5
rough 5 5 5

feature density 5 5 3
direction 4 5 7

structural complexity 4 3 3
coarse 6 6 5
regular 3 9 4
oriented 4 3 7
uniform 4 4 5

the effectiveness of our method. In addition, the predicted
perceptual scales of the query textures are shown in Table
II.

V. CONCLUSION

In this paper, we propose a method to retrieval textures
that are in accordance with human perception. In order to
achieve this purpose, we implement our retrieval scheme by
estimating prominent perceptual features. Because psychome-
tric perceptual features are expensive to obtain, a mapping
model is constructed to estimate the perceptual scales for
each surface texture in our database. By searching the nearest
neighbours in the prominent feature space, retrieval results that
are perceptually consistent with users’ input are obtained.
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