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Abstract—This paper proposes 3-D OCT data denoising with
nonseparable oversampled lapped transform (NSOLT), and ex-
amines the effectiveness through experiments. NSOLT is a
lattice-based redundant transform which simultaneously satisfies
the symmetric, real-valued and compact-support property. It
is possible to apply a dictionary learning technique to the
design by preparing examples. NSOLT is capable of having
rational redundancy by controlling the number of channels and
decimation ratio. In this study, a denoising technique is proposed
by combining learned NSOLT dictionary and iterative hard
thresholding (IHT), and the performance of the proposed method
is evaluated for 3-D OCT data. It is verified through robust
median estimator of noise variance and structural similarity in-
dex measure (SSIM) that the proposed technique yields effective
denoising performance with moderate redundancy.

I. INTRODUCTION

Redundant transforms and sparse representation have suc-

cessfully found a lot of applications in the field of image

processing, such as feature extraction, denoising, deblurring,

super-resolution, inpainting, as well as compressive sensing

[1]–[6]. It is a natural demand to extend the sparsity-aware

image processing for higher-dimensional signals such as vol-

umetric images acquired through computed tomography (CT),

magnetic resonance imaging (MRI) [7], and optical coherence

tomography (OCT) [8]–[11].

An OCT system produces high-resolution cross-sectional

images of microscopic structures in living tissue. A signal

acquired by a 3-D OCT scanner is expressed as

Sv,h(d) = Av,h(d)

+
∑

d̂∈Dv,h

α(d̂)Bv,h(d− d̂) cos

(

4π(d− d̂)

λ

)

, (1)

where v, h and d denote vertical, horizontal and depth position,

respectively, and Dv,h and α(d̂) are a set of depth positions

where tissues exist at spatial position (v, h) as coherent re-

flectors and an attenuation factor at d̂. The first term, Av,h(d),
in the right hand side of (1) denotes the mean (DC) intensity

at position (v, h) and the second carries information about

tissue structure, where λ is the center wavelength of the source

light and Bv,h(d− d̂) is a coherence function. The coherence

function Bv,h(d − d̂) shapes like Gaussian function and its

peak indicates a tissue location.

What we are interested in is to obtain the second term, i.e.,

the target signal is

Uv,h(d) = Sv,h(d)−Av,h(d)

=
∑

d̂∈Dv,h

α(d̂)Bv,h(d− d̂) cos

(

4π(d− d̂)

λ

)

. (2)

In practice, the acquired signal Sv,h(d) is contaminated by

noise and other degradation processes and Uv,h(d) is required

to be restored from the contaminated observation.

Let us assume that an observed OCT signal suffers from

additive white Gaussian noise (AWGN) as

Xv,h(d) = Uv,h(d) +Wv,h(d), (3)

where Xv,h(d) is an observed coherence function and Wv,h(d)
is AWGN. This assumption is realistic because the DC inten-

sity Av,h(d) occupies most energy of Sv,h(d) and thus the

sensor sensitivity severely affects to Uv,h(d).
In this study, we propose to apply 3-D nonseparable

oversampled lapped transforms (NSOLTs) [12] to OCT sig-

nal denoising, and experimentally evaluate the performance.

NSOLT is an invertible redundant transform generated and

implemented by a lattice structure [12]–[14]. The atoms are

guaranteed to be symmetric or antisymmetric, and posses the

nonseparable, real-valued, overlapping and compact-support

property. NSOLT is also equipped with no-DC-leakage option

and atom termination function at image boundary. Under

a structural constraint of the Parseval tight frame property,

we can also design an NSOLT dictionary with multiscale

representation through a dictionary learning approach [12],

[15]. The redundancy R can flexibly be controlled by the

number of channels P and the downsampling ratio M .

In [12], it was verified that NSOLTs have comparable or

superior sparse representation performance to the Sparse K-

SVD, a learning-based dictionary developed by Rubinstein

et al. [16], especially for pictures with large smooth region.

In this work, we verify the significance of 3-D NSOLTs

by applying it to a 3-D OCT data denoising problem and

evaluating the performance.

II. SPARSITY-AWARE DENOISING

In a sparsity-aware denoising approach, the signal modeling

has a crucial role. Let u ∈ R
N be a vectorized volume image
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Data: Observed picture x ∈ R
N

Result: Denoised picture û ∈ R
M

Initialization;

i← 0;

y(0) ← DTx;

Main iteration to find y that minimizes

f(y) = ‖x−Dy‖22 s.t. ‖y‖0 ≤ K;

repeat

i← i+ 1;

y(i) ← HλK

(

y(i−1) − µDT (Dy(i−1) − x)
)

;

until ‖y(i) − y(i−1)‖22/‖y(i)‖22 < ǫ;

û← Dy(i);

Algorithm 1: IHT algorithm with Parseval tight frame

dictionary D, where HλK
(·) is a hard thresholding vector

function defined by (6), µ = (1− c) with 0 < c≪ 1 and

DT is an adjoint of D.

of Uv,h(d) in (2). Then, vector u can be represented through

a transform matrix D ∈ R
N×L as

u = Dy (4)

with a coefficient vector y ∈ R
L, where N < L for redundant

D. The column vectors of D, denoted as {dℓ}L−1
ℓ=0 , and D

itself are referred to as ‘atoms’ and a ‘dictionary,’ respectively.

Sparse coding through some dictionary can approximate

an image x and be used for removing AWGN from x. This

purpose is achieved by finding y of which nonzero coefficients

are as few as possible under the constraint ‖x − Dy‖22 ≤ ǫ
for a small positive constant ǫ. The problem looking for an

optimum y is formulated as follows:

ŷ = arg min
y∈RL

‖x−Dy‖22 s.t. ‖y‖0 ≤ K, (5)

where ‖ · ‖0 denotes the count of nonzero coefficients and

0 < K ≪ N . Finally, an approximation or denoised vector of

x is obtained by û = Dŷ.

The iterative hard thresholding (IHT) [17], [18] approxi-

mately solves (5). The advantage is the computational effi-

ciency and it is applicable to huge amount of data. Algorithm 1

shows the IHT algorithm with a Parseval tight frame dictio-

nary, where HλK
(·) is a hard thresholding vector function

defined by

HλK
(v) = sign(v) ◦ |v|(|v|>λK), (6)

where sign(·) returns a sign vector which contains −1, 0 or +1
according to the sign of each element and |v|(|v|>λK) denotes

a function that remains elements of which absolute value is

greater than λK and replace the others to zero, where λK is

the K-th largest absolute value among elements in v. Symbol

◦ denotes element-wise product, i.e., Hadamard product.

III. 3-D NSOLT DICTIONARY

Developing a 3-D dictionary is a crucial task to improve

the performance of sparsity-aware volume data processing.

Fig. 1. Examples of lattice structures for realizing propagation matrix

V
{i}
n Q(zi).

The nonseparable construction is indispensable so that slant-

ing edges and textures are sparsely represented. In addition,

redundancy R should be taken care of because the amount of

data is huge and its influence to the required computational

resources is not trivial.

Let us briefly review NSOLT as a dictionary D to model

a volumetric image u as in (4). In the followings, z ∈ C
3

denotes a 3 × 1 complex variable vector (z0, z1, z2)
T in

the 3-D z-transform domain, and P denotes the number of

channels. Input arrays are assumed to be divided into small

blocks according to a downsampling factor M ∈ Z
3×3, which

determines the stride of atomic images. The downsampling

ratio M and redundancy R are given by M = | det(M)| and

R = P/M(= L/N), respectively. Note that the product of

sequential matrices ANAN−1 · · ·A1 is denoted by
∏N

n=1 An.

Symbols o, O and Im are reserved for the null column vector,

null matrix, and m×m identity matrix, respectively.

A. Lattice Structure of NSOLT

NSOLTs are composed only of symmetric or antisymmetric

atoms [12]–[14]. According to the numbers of symmetric

channels ps and antisymmetric channels pa(= P − ps), they

are categorized into two types as follows:

• Type-I: ps = pa,

• Type-II: ps 6= pa.

In this study, we adopt only the Type-I construction, where

the number of channels P = ps + pa must be even. The

polyphase matrix of 3-D analysis Type-I NSOLT is expressed

by

E(z) =

2
∏

i=0

{

Ni
∏

n=1

(

V{i}
n Q(zi)

)

}

·V0E0, (7)

where Ni ∈ (0 ∪ N) is the polyphase order of the i-
th dimension, which controls the overlap amount of atomic

images, and

Q(zi) = B
(P

2
)

P

(

Ips
O

O z−1
i Ipa

)

B
(P

2
)

P ,

V{i}
n =

(

Ips
O

O U
{i}
n

)

,

and

B
(m)
P =

1√
2

(

Im Im
Im −Im

)

.

Fig. 1 illustrates a building block of the corresponding lat-

tice structure, where U
{i}
n ∈ R

pa×pa is an arbitrary invertible
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Fig. 2. Tree structure of multiscale NSOLT

matrix. For a diagonal decimation factor M, we can adopt

the product of 3-D separable discrete cosine transform (DCT)

E0 ∈ R
M×M , which is obtained by a Kronecker product of

three 1-D DCTs, and

V0 =

(

W0 O

O U0

)

∈ R
P×M

as the initial matrix, where W0 ∈ R
ps×ps and U0 ∈ R

pa×pa

are arbitrary left invertible parameter matrices.

B. Multiscale Tight Frame Representation

NSOLTs are equipped with the no-DC-leakage option and

atom termination function as an image boundary manipulation

[12], [13], [19]. In addition, when all of the parameter matrices

W0, U0, and {U{i}
n } are restricted to be orthonormal, it yields

a Parseval tight frame.

A Parseval tight synthesis system is obtained as an adjoint

of a Parseval tight analysis counterpart. In other words, we can

obtain a paraunitary synthesis system as a paraconjugation of

a paraunitary analysis counterpart. Furthermore, by iteratively

reconstructing the DC coefficients as shown in Fig. 2, a

multiscale tight frame dictionary is realized [12], [15]. The

redundancy RP
M (τ) of τ -level multiscale NSOLT is given by

RP
M (τ) =

{

(P − 1)τ + 1, M = 1
P−1
M−1 − P−M

(M−1)Mτ , M ≥ 2
. (8)

C. Example-based Design

NSOLT can be designed through an example-based learning

technique [12], [15]. The design problem is formulated as

follows:

{D̂, {ŷi}} = arg min
D,{yi}

S−1
∑

i=0

‖xi −Dyi‖22 s.t. ‖yi‖0 ≤ K,

(9)

where xi is a training image and yi is a coefficient vector

of xi. As typical dictionary learning techniques, we divide

the learning process into the ‘sparse approximation’ and

‘dictionary update’ stage, and alternatively apply these two

stages to find a solution set.

• Sparse approximation stage tries to find a set of sparse

coefficient vectors {yi} which minimizes the approxima-

tion error for given images {xi} under a fixed dictionary

D̂ and the K-sparse constraint. This problem is formu-

lated as follows:

ŷi = argmin
yi

‖xi − D̂yi‖22 s.t ‖yi‖0 ≤ K

for i = 0, 1, · · · , S−1, where S is the number of samples.

• Dictionary update stage tries to find a dictionary D

which minimizes the approximation error for given im-

ages {xi} and fixed coefficients {ŷi}. Since a tight

NSOLT can be designed by controlling rotation angles

{θi} and sign parameters {si} based on Givens factor-

ization of orthonormal parameter matrices, the design

problem is formulated as

Θ̂ = argmin
Θ

S−1
∑

i=0

‖xi −DΘŷi‖22,

where Θ = {{θi}, {si}} and DΘ is a multiscale NSOLT

dictionary determined by Θ [12], [15]. D̂ = D ˆΘ
is used

in next step.

IV. 3-D OCT DENOISING WITH NSOLT

In this section, we analyze an acquired OCT signal and

propose to apply 3-D NSOLT to denoising it for extracting

the coherent reflection term. Our denoising procedure is sum-

marized as follows:

1) Remove the DC intensity in the depth direction by sub-

tracting the average slice of a current, ten previous and

ten post slices from every slice. Circular convolution is

adopted to maintain the boundaries in the light direction.

2) Draw a small volume patch x0 that contains significant

intensity variation from the observed volume x that is

obtained after DC subtraction in the previous step.

3) Design a 3-D NSOLT dictionary D by using x0 as

an example through the dictionary learning approach

described in III-C.

4) Denoise x by applying IHT and the designed 3-D

NSOLT.

The reason why we take an average of succeeding twenty-

one slices in Step 1 is because we observed strong frequency

components in the original OCT signal Sv,h(d) lower than

around π/20 from the Fourier analysis in the depth direction.

A. 3-D OCT Image

This work uses the 3-D OCT data shown in Fig. 3, which

was acquired by multifrequency sweeping Fizeau interferom-

eter [9]–[11]. Kidney tissue of a mouse fixed with formalin

and embedded in paraffin was used as the test object.

Fig. 3 (a) shows the original volumetric image of size 256×
256× 512 voxels in unsigned 16bpp grayscale and (b) shows

the DC-subtracted one, which we process as an observation

x. We see that the coherent reflections in x are not so strong

that noise intensity becomes relatively high.

Signal Xv,h(d) in Fig. 4 is a sequence of the volumetric

image shown in Fig. 3 (b) at the vertical and horizontal center

along the light direction. A strong intensity is observed at

slice 183. This implies that some object exits around the
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(a) (b)

Fig. 3. 3-D OCT images of size 256× 256× 512. (a) Raw 3-D OCT data in unsigned 16bpp grayscale, where the intensity is normalized to the range [0, 1].
(b) DC-subtracted OCT data Xv,h(d) in signed 16bpp grayscale.
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Fig. 4. Intensity sequences of 3-D OCT data in Fig. 3 in the light direction
at vertical and horizontal center position.
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Fig. 5. Volume patch x0 of size 64× 64× 64 drawn from Fig. 3 (b) for 3-D
NSOLT dictionary learning.

slice and detected by OCT as a coherent reflection. From this

observation, we drew a volume patch x0 of size 64× 64× 64
voxels around the peak location for the 3-D NSOLT dictionary

learning. Fig. 5 shows the extracted volume patch.

TABLE I
EXPERIMENTAL SETTINGS OF 3-D
MULTISCALE NSOLT LEARNING.

♯Downsampl. M 1× 1× 2
♯Channels P 3 + 3

Polyphase Ord. Nd (2, 2, 2)
Sparsity K/N 32, 768/643

Initial dictionary Haar DWT

Training data size 64×64×64
Sparse Approx. IHT

Iterations 20

Fig. 6. Learned atoms of size 3 × 3 × 6 with M = diag(M0,M1,M2) =
diag(1, 1, 2), M = | det(M)| = M0 × M1 × M2 = 1 × 1 × 2, P =
ps + pa = 3 + 3, (N0, N1, N2)T = (2, 2, 2)T and τ = 3, where single
level atoms are shown.

B. 3-D NSOLT Dictionary Learning

We trained 3-D NSOLT dictionaries by using the volume

patch x0 shown in Fig. 5, where a single example is adopted,

i.e., S = 1. Since the patch size is larger than atoms in an

NSOLT dictionary, this example also has similar effects to the

case of using multiple small examples.

The experimental settings are summarized in Table I. In

this work, the no-DC-leakage property is taken into account

and the atom termination at image boundary is adopted. We

examined systems with P = ps + pa = 3 + 3 for different

tree levels. In the dictionary update stage, the unconstrained

minimization function ‘fminunc’ of MATLAB R2015a is
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Fig. 7. The v-h slice of the volume image shown in Fig. 3 (b) at d = 183.

(a) (b)

(c) (d)

Fig. 8. Examples of v-h slices at d = 183. (a) Denoised slice with three-
level NSOLT in Fig. 6, (b) Absolute difference between (a) and Fig. 7, (c)
Denoised slice with single-level undecimated Haar transform, (d) Absolute
difference between (c) and Fig. 7.

used for optimizing angles {θi} after initialization of the signs

{si} and angles {θi} with the genetic algorithm function ‘ga’

of MATLAB R2015a. Fig. 6 shows an example set of learned

atoms.

V. DENOISING PERFORMANCE EVALUATION

Let us evaluate the denoising performance of the proposed

method for the volume data shown in Fig. 3 (b). In this ex-

periment, we adopt the IHT algorithm with Parseval tight 3-D

NSOLTs, where the sparsity is set to remain K = 2, 097, 152
coefficients in total, i.e., 6.25% of the number of the spacial

voxels 256 × 256 × 512, the number of channels is fixed to

P = ps + pa = 3 + 3 and the tree level τ is set to three.

Sequence “Ûv,h(d)” in Fig. 4 shows the intensity variation

of the denoised volume data in the light direction at the vertical

TABLE II
DENOISING RESULTS OF IHT WITH 3-D NSOLT FOR VOLUME DATA OF

SIZE 256× 256× 512, WHERE K = 2, 097, 152. “σ2

RME
” DENOTES

ROBUST MEDIAN ESTIMATION OF NOISE VARIANCE.

Redundancy R < 5
♯Downsampl. M 1× 1× 2
♯Channels P ps + pa = 3 + 3
Evaluation σ2

RME
SSIM (d = 183)

τ = 1 1.03× 10−6 0.9455

τ = 2 1.68× 10−6 0.9440

Tree level τ = 3 3.60× 10−7 0.9418

τ = 4 5.90× 10−7 0.9413

τ = 5 4.95× 10−7 0.9420

TABLE III
DENOISING RESULT OF IHT WITH SINGLE-LEVEL UNDECIMATED HAAR

TRANSFORM FOR VOLUME DATA OF SIZE 256× 256× 512, WHERE

K = 2, 097, 152. “σ2

RME
” DENOTES ROBUST MEDIAN ESTIMATION OF

NOISE VARIANCE.

Redundancy R 7τ + 1
♯Downsampl. M 1× 1× 1
♯Channels P ps + pa = 4 + 4

Evaluation σ2

RME
SSIM (d = 183)

Tree level τ = 1 0.00 0.9329

and horizontal center location. Sequence “Xv,h(d)− Ûv,h(d)”
denotes the difference between the observed sequence Xv,h(d)
and the denoised one. It is observed that noisy fluctuations are

suppressed compared with the original while maintaining the

significant coherent reflections. The peaks of such significant

coherent reflections mean the positions where kidney tissues

exist and convey the structural information. The proposed

method is expected to avoid false-positive detections. Fig. 7

shows the v-h slice of the volume image shown in Fig. 3 (b)

at d = 183, and Figs. 8 (a) and (b) show the v-h slices of the

denoised volume data and the absolute difference from the

original, respectively. For reference, those of the undecimated

Haar transform (UHT) [3], [20] are also given in Figs. 8 (c)

and (d). Note that UHT is Parseval tight and is applicable to

the IHT algorithm shown in 1. From Fig. 8, we can see that 3-

D NSOLT appropriately removes the noisy component while

keeping the coherent pattern. Note that the redundancy of the

three-level NSOLT is only 4.5, while that of the single-level

UHT is 8.

Table II summarizes the robust median estimation (RME)

of noise variances [21] in the full volume data and structural

similarity index measure (SSIM) [22] of slices at d = 183. The

former and latter measure the ability of noise removal and

structure preservation characteristic, respectively. Note here

that we extract fine components from signals by adopting the

3-D high-pass filter with the following impulse response:

H0 =
1

2
√
2

(

1 −1
−1 1

)

, H1 =
1

2
√
2

(

−1 1
1 −1

)

for calculating RME of noise variance, where Hd denotes the

impulse response of the d-th slice.

For reference, we also give the denoising results with the

single-level UHT in Table III. Although the estimated noise

variance is larger than that of UHT, 3-D NSOLT seems to
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preserve the structure of more significant coherent reflections

than UHT. Unfortunately, we are not allowed to access the

noiseless clean signal and SSIM does not give appropriate

evaluation in this experiment. We can subjectively see that 3-

D NSOLT shows comparable performance to UHT with less

redundancy in the IHT denoising approach. One of the reasons

is that 3-D NSOLT can be designed through the example-

based approach shown in III-C and efficiently model a given

volumetric image.

VI. CONCLUSIONS

In this work, we porpoised to apply IHT and 3-D NSOLT to

OCT data denoising. By using dictionary learning approach,

we obtained appropriate atom set for sparsely representing

coherent reflections. Through some experiments, we verified

the combination of IHT and NSOLT shows comparable or

superior performance to the combination of IHT and the

undecimated Haar transform with significant reduction of the

redundancy.
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