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Abstract—Intrusion detection in a wireless sensor network
(WSN) has drawn intensive attentions recently due to its wide
applications. Many issues in intrusion detection, such as sensor
deployment, mobility of sensors and data fusion have been
investigated extensively. However, the behavior of the intruder
has rarely been investigated. In this paper, we introduce a novel
situation where the intruder can destroy encountered sensors.
This situation is analyzed theoretically and experimentally under
our system model. The key point is to discuss the intrusion
detection problem differently according to the speed of the
intruder. We derive the detection probability, which can be
applied to any sensor deployment utilizing the disc model. The
detection model we used includes a single-sensing detection model
and a multiple-sensing detection model. Some interesting factors
in intrusion detection, such as transmission period, sampling
period, and the random entrance time of the intruder are also
considered. Finally, our Monte-Carlo simulation results validated
our analytical results.

Keywords—wireless sensor network, intrusion detection, disc
model, destructive intruder

I. INTRODUCTION

Nowadays, it is economically feasible to manufacture a
large quantity of small and low-cost sensors. Since these
sensors are highly flexible, survivable, stable, and effective,
WSNs are suitable for many applications, such as battlefield
surveillance, traffic monitoring, and fire detection [1]. This pa-
per investigates the application of WSNs in intruder detection.

In the intruder detection problem, based on the information
from sensors, the WSN tries to determine the presence of an
intruder in a region of interest (ROI). Intruder detection has
been studied intensively [2]-[6]. Many factors can influence the
detection performance, such as sensor distribution, sensor type,
sensor positions, detection model and intrusion strategy. In
[2], authors studied the effect of different sensor distributions
on the detection performance. Particularly, the authors in [2]
used a single-sensing detection model and a multiple-sensing
detection model. In [3], the authors investigated the effect of
sensor types on intruder detection. Moreover, sensors can move
as in [5] to provide better field coverage and the presented
detection algorithm does not depend on a particular sensor
field shape. In this paper, however, we only study fixed
sensors because our sensors are low-cost and not able to move.
Furthermore, only homogeneous sensors are used in this paper
to simplify our analysis. Particularly, we investigate the new
situation where the intruder can destroy sensors it encounters
based on the setup in [2][3]. To the best of our knowledge,
no one has studied this situation before. We will also consider

some uninvestigated factors, such as random intruder entrance
time, random sensor destruction and transmission period.

Our main contributions are listed below. First, we consid-
ered a new intrusion detection problem in which the intruder
could destroy all sensors in its surrounding region for the
single-sensing detection model and the multiple-sensing de-
tection model. Second, we investigated the effect of the trans-
mission period on detection performance. Third, the effects of
the random intruder entrance time and the random destruction
strategy were also discussed. Finally, simulations were carried
out to validate our analytical results.

The rest of this article is organized as follows. In Section
II, the system model we used is presented, followed by the
intrusion detection method in Section III. The effect of the
transmission period and the sampling period is discussed in
Section IV where we evaluate the problem using the single-
sensing detection model. In section V, the multiple-sensing
detection model is considered and some new conditions are
presented in Section VI. Simulation results are presented and
discussed in Section VII. Finally, concluding remarks are given
in Section VIII.

II. SYSTEM MODEL

Similar to the models in [2][3], our system model consists
of a sensing and detection model, a network deployment
model, an intrusion strategy model, and evaluation metrics.
The sensing and detection model specifies the way the system
detects the intruder. In this paper, we use the single-sensing
detection model and the multiple-sensing detection model. The
network model defines the sensor field layout and sensor con-
figurations. The intrusion strategy model defines the movement
of the intruder. The evaluation metrics describe the metrics
used to assess the intrusion detection performance. We use
the disc model in [4] in our analysis since it is practical and
appropriate for our configurations.

A. Sensing and Detection Model

In this paper, we analyze the intrusion detection problem
using the single-sensing detection model and the multiple-
sensing detection model. The intruder is detected when it is
identified by a single sensor in the single-sensing model or
when it is identified by m sensors in the multiple-sensing de-
tection model where m depends on the particular application.
Please note that these m sensors need not to sense the intruder
at the same time under the multiple-sensing detection model.

Obviously, the detection probability obtained by using the
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multiple-sensing detection model is less than that obtained by
using the single-sensing detection model in the same WSN.
However, the multiple-sensing detection model may be useful
in some applications. For example, the collected data from one
sensor may be insufficient if we want to estimate the intruder
position. Information from at least three sensors is needed
for position estimation if sensors are not able to measure the
direction of incoming signals [7][8]. In this particular instance,
the intruder can be successfully detected and located only by
using multiple-sensing detection models. In this paper, we use
both detection models.

B. Network Deployment Model

The WSN used in this paper consists of N sensors de-
ployed in a two-dimensional coordinate system. Before the
intruder appears, these sensors are deployed in a square area
A = L × L, where L is the side length. All sensors are
stationary after deployment. A sensor can only detect the
intruder within its sensing coverage area, which is a disk
of radius rs. Moreover, all sensors have the same sensing
range. Besides the sensing range, the probability to identify
an intruder, called identification probability, is also important.
The identification probability can be described as a function
g, which can be a boolean function or a probability function
whose argument can be the distance between the sensor and
the intruder. If a boolean function is used, we assume that
the intruder will be immediately identified after entering the
sensing area of a sensor. In other cases, whether the intruder
will be identified is determined by the identification function,
which will be explained later.

In this paper, we discuss a WSN with N sensors randomly
deployed around a target point (i.e., the center of the ROI)
following a particular distribution. This distribution can be
a two-dimensional uniform distribution or a two-dimensional
Gaussian distribution [3]

f(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (1)

where the parameter σ is the standard deviation. There are oth-
er deployment strategies with mixing normal distributions, i.e.,
hybrid gaussian-ring deployment [9] and k-gaussian deploy-
ment [10]. In the following analyses, we use the distribution
function fxy(σ) to represent a general function for the sensor
deployment in a Cartesian coordinate system. Therefore, our
derivation is valid for all sensor deployments.

Moreover, we assume that sensors can transmit signals to
the fusion center with period T and there is no emergency
transmission or asynchronous transmission (Fig. 1). Delay is
also an essential factor in the intrusion detection. It can be
caused by the acoustic signal propagation delay or by the
sensor sampling interval. We do not take the sampling interval
into consideration since it is insignificant compared to the
transmission period. Furthermore, acoustic signal propagation
delay is omitted since it does not affect our derivation.

C. Intrusion Strategy Model

Similar to the setup in [2], we assume that the intruder
has the knowledge of the target location. Since we do not take
landform into consideration, invading in a straight-line path
is regarded as the most efficient intrusion strategy. Under our
hypothesis, the intruder can enter the ROI from an arbitrary

Fig. 1. Sampling Interval

Fig. 2. Intrusion detection area in a WSN with intrusion distance D = ξ

point with distance R to the target. Then, it goes directly to
the target in a straight line with velocity V . We can build the
Cartesian coordinate system based on the intrusion path (Fig.
2).

As explained in the introduction section, we also consider
the situation where the intruder destroys sensors along its path.
The destruction region has a certain radius. The intruder will
immediately destroy all sensors in its destruction region. In
other words, we assume that no time interval exists between
sensor destructions and that the number of destroyable sensors
is not limited. Further assumptions will be made and clarified
during the derivation.

D. Evaluation Metrics

The following two metrics are useful to evaluate intrusion
detection [3]. The first metric is intrusion distance D. It is
the distance that the intruder advances before it is detected
by the WSN. The second metric is the detection probability
P [D ≤ ξ]. It is the probability that an intruder can be detected
before reaching the maximal allowable intrusion distance ξ.
The detection probability is the primary metric we use to
measure the detection performance in this paper.

III. INTRUSION DETECTION IN A WSN

A significant difference between our research and previous
research is that in our research, the intruder can destroy all
sensors in its surrounding region with radius rd. In this paper,
we assume that the sensor detection distance rs is larger than
rd. Otherwise, the intruder will never be detected under our
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Fig. 3. Intrusion detection using the disc model

assumption.
In the given network model, there are N sensors deployed

inside the ROI. Based on Theorem 1 in [2], a similar theorem
using our assumptions is presented. The transmission period
is not taken into consideration here. A detailed proof, which
is based on the proof in [2], is also provided.

Theorem 1: Suppose the maximal allowable intrusion dis-
tance for a given WSN is ξ (ξ ≥ 0), and the intruder starts at
point (R, 0) while the target stays at point (0, 0). Let P1[D ≤
ξ] denote the detection probability that the intruder can be
detected within the maximal allowable intrusion distance under
the single-sensing detection model. The detection probability
is

P1[D ≤ ξ] = 1− {1−
∫ R

R−ξ

∫ rs

−rs
fxy(σ)dydx

−
∫ R−ξ

R−ξ−rs

∫ √rs2−(x−R+ξ)2

−
√
rs2−(x−R+ξ)2

fxy(σ)dydx

−
∫ R+rs

R

∫ √rs2−(x−R)2

−
√
rs2−(x−R)2

fxy(σ)dydx

+

∫ R

R−ξ

∫ rd

−rd
fxy(σ)dydx

+

∫ R−ξ

R−ξ−rd

∫ √rd2−(x−R+ξ)2

−
√
rd2−(x−R+ξ)2

fxy(σ)dydx

+

∫ R+rd

R

∫ √rd2−(x−R)2

−
√
rd2−(x−R)2

fxy(σ)dydx}N (2)

where fxy(σ) stands for the probability density function (PDF)
of the sensor distribution.

Proof: In order to calculate the intrusion detection prob-
ability, a Cartesian coordinate system is used as illustrated in
Fig. 2 and Fig. 3. Without loss of generality, point (0, 0) is set
as the location of the target, and point (R, 0) is the starting
position of the intruder. The intruder is moving toward the
target in a straight line, along the x-axis. Once the entrance
point is fixed, the corresponding Cartesian coordinate system
can be built accordingly.

As the intruder would be detected within the distance ξ in
the single-sensing detection model, there should be at least one
sensor located in the corresponding detection region Sξ. The
area of Sξ is given by Sξ = 2ξrs + π2rs as illustrated in Fig.
3. The small circles in Fig. 3 indicate the destruction region
of the intruder. Sensors within the large circles can detect the
intruder.

Let ps be the probability that a sensor is deployed in the

large rectangular region and the two half discoidal regions.
Let pd be the probability that a sensor resides in the small
rectangular region and the two small half discoidal regions.
We can calculate ps and pd by integration:

ps =

∫ R

R−ξ

∫ rs

−rs
fxy(σ)dydx

+

∫ R−ξ

R−ξ−rs

∫ √rs2−(x−R+ξ)2

−
√
rs2−(x−R+ξ)2

fxy(σ)dydx

+

∫ R+rs

R

∫ √rs2−(x−R)2

−
√
rs2−(x−R)2

fxy(σ)dydx (3)

pd =

∫ R

R−ξ

∫ rd

−rd
fxy(σ)dydx+∫ R−ξ

R−ξ−rd

∫ √rd2−(x−R+ξ)2

−
√
rd2−(x−R+ξ)2

fxy(σ)dydx+∫ R+rd

R

∫ √rd2−(x−R)2

−
√
rd2−(x−R)2

fxy(σ)dydx. (4)

Then, the probability pξ that a sensor is deployed in
the region where it can detect the intruder and will not be
destroyed can be expressed as pξ = ps − pd. The probability
that there is no sensor located in the detection region is 1−pξ.
Thus, the probability that there is at least one sensor located
in that region can be expressed as 1− (1−pξ)N . It is obvious
that P1[D ≤ ξ] should equal to 1−(1−pξ)N . Hence, we have
equation (2).

Note that ξ equals 0 means that the intruder is immediately
detected when it enters the ROI. We denote P1[D = 0] as the
instant detection probability [3].

IV. CASE ANALYSIS FOR THE SINGLE-SENSING
DETECTION MODEL

In this section, we include the transmission period in the
calculation of the detection probability. We assume that the
intruder appears at time 0, which is right before the time when
the sensors start sampling and transmitting data. The position
of the intruder is (R−nV T, 0) where n represents the number
of transmission periods and n is a natural number. The problem
is discussed in five different cases based on the speed of the
intruder, V .

We also assume that the sampling period is the same as the
transmission period. In order to ensure that the data is fresh
for every transmission, the sampling period is usually equal or
less than the transmission period. To simplify our analysis, we
set the sampling period equal to the transmission period for
the rest of the paper.

In addition, we take the identification function into con-
sideration. This function introduces the situation where the
intruder is in the detection region but it is not identified by
sensors. This is related to the signal strength received by the
sensors, which is a distance function. In sum, the identification
function generates the probability that a sensor identifies the
intruder within its sensing range based on the distance between
them. The identification function at time nT is denoted by
gxy(nT ) . Therefore, we use fxy(σ)gxy(nT ) to represent the
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Fig. 4. Intrusion detection using the disc model: case one

probability that the sensor at the point(x, y) detects the intruder
at time nT .

In following cases, the detection probability is calculated
using the disc model. In other words, the calculation is based
on the disc size rather than the entire area that the intruder
travels through. Thus, the integration over the rectangle in Eqn.
(2) will be replaced with the sum of integrals over parts of the
discs.

A. Case One

In this case, we assume that V ≥ 2rs
T so that the detection

discs do not overlap each other. Hence, the detection proba-
bility P2[D ≤ nV T ] is

P2[D ≤ nV T ] = 1− {1−
n∑
i=0

pα(i)− pε}N (5)

where

pα(i) =∫ R−iV T+√
rs2−rd2

R−iV T

∫ √rs2−(x−R+iV T )2

rd

fxy(σ)gxy(iT )dydx+

∫ R−iV T+√
rs2−rd2

R−iV T

∫ −rd
−
√
rs2−(x−R+iV T )2

fxy(σ)gxy(iT )dydx+∫ R−iV T

R−iV T−rs

∫ √rs2−(x−R+iV T )2

−
√
rs2−(x−R+iV T )2

fxy(σ)gxy(iT )dydx−∫ R−iV T

R−iV T−rd

∫ √rd2−(x−R+iV T )2

−
√
rd2−(x−R+iV T )2

fxy(σ)gxy(iT )dydx, (6)

pε =

∫ rd

−rd

∫ R+
√
rs2−y2

R+
√
rd2−y2

fxy(σ)gxy(iT )dxdy. (7)

In equation (6), the first term stands for the probability that
a sensor, which detects the intruduer, exists in every intercepted
top-right area of the detection discs, i.e., area α1 (Fig. 4).
Similarly, the second term stands for the probability that a
sensor exists in every intercepted bottom-right area of the
detection discs, i.e., area α2. The third term represents the
probability that a sensor exists in every left semicircle of the
detection discs. The last term represents the probability that a
sensor exists in every left semicircle of the destruction disc. By
subtracting the last term from the third term, we will get the
probability of the left parts of rings, i.e., area α3. Although
some parts of the half rings are inside the small rectangle
formed by destruction regions, the sensor stays undamaged at

Fig. 5. Intrusion detection using the disc model: case two

Fig. 6. Intrusion detection using the disc model: case three

the time of sampling. Therefore, we still calculate the detection
probability using the whole left parts of the rings.

Eqn. (7) indicates the probability that a sensor exists in
the area ε, which is the area of the rightmost ring between
[−rd, rd] on the y-axis. We do not consider the corresponding
areas of other discs since the sensors in those areas would have
been destroyed by the intruder before the sampling time. Thus,
the sum of equaton (6) and equation (7) is the probability that
one sensor identifies the intruder. Therefore, we can get Eqn.
(5) based on the proof of Theorem 1.

B. Case Two

In case two, we assume that 2
√
rs2−rd2
T < V < 2rs

T . In this
case, the top areas of the detection disc (the part of the rings
that does not stay in the smaller rectangular region) do not lay
over their previous detection areas (Fig. 5). Eqn. (5) still works
here since there is no overlap between the actual detection
areas. We choose the boundaries based on our calculation
category. It does not matter whether 2rd

T , whose geometrical
meaning is the destruction discs tangent to the next destruction
discs, belongs to this case.

C. Case Three

In this case, we have
√
rs2−rd2
T < V <

2
√
rs2−rd2
T ,

which means that there are overlaps of the actual detection
areas in our previous calculation (Fig. 6). Thus, the detection
probability can be calculated as

P2[D ≤ nV T ] =

1− {1−
n∑
i=0

pα(i) +
n∑
i=1

pβ(i)− pε}N (8)
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Fig. 7. Intrusion detection using the disc model: case four

where pβ(i) equals∫ R−iV T+√
rs2−rd2

R−(i− 1
2 )V T

∫ √rs2−(x−R+iV T )2

rd

fxy(σ)gxy(iT )dydx+

∫ R−iV T+√
rs2−rd2

R−(i− 1
2 )V T

∫ −rd
−
√
rs2−(x−R+iV T )2

fxy(σ)gxy(iT )dydx+∫ R−(i− 1
2 )V T

R−(i−1)V T
−
√
rs2−rd2

∫ dβ

rd

fxy(σ)gxy(iT )dydx+

∫ R−(i− 1
2 )V T

R−(i−1)V T
−
√
rs2−rd2

∫ −rd
−dβ

fxy(σ)gxy(iT )dydx (9)

where dβ is
√
rs2 − (x−R+ (i− 1)V T )

2. In Eqn. (9), the
integral limit R− (i− 1

2 )V T is the abscissa of the intersection
of two detection circles. It is obvious that pβ(i) equals the
detection probability that a sensor exists in the hatched areas
that are the overlaps on the top/bottom of detection discs. We
subtract it since it is counted twice in Eqn. (5) in this case.

D. Case Four

We assume rs−rd
T ≤ V ≤

√
rs2−rd2
T in this case. This

interval means that the intersection of the destruction disc
and the previous detection disc is on the the left side of the
detection disc (Fig. 7). The detection probability becomes

P2[D ≤ nV T ] =

1− {1−
n∑
i=0

pα(i) +

n∑
i=1

(pβ(i) + pγ(i))− pε}N (10)

where pγ(i) equals∫ R−iV T

R−(i−1)V T
−
√
rs2−rd2

∫ rd

dγ

fxy(σ)gxy(iT )dydx+

∫ R−iV T

R−(i−1)V T
−
√
rs2−rd2

∫ −dγ
−rd

fxy(σ)gxy(iT )dydx+

∫ R−(i−1)V T
−
√
rs2−rd2

R−iV T−s0

∫ dβ

dγ

fxy(σ)gxy(iT )dydx+

∫ R−(i−1)V T
−
√
rs2−rd2

R−iV T−s0

∫ −dγ
−dβ

fxy(σ)gxy(iT )dydx (11)

where s0 = rs
2−rd2−V 2T 2

2V T and dγ =√
rd2 − (x−R+ iV T )

2.
The horizontal distance between the leftmost point

of the cross-pattern area and the center of the leftmost
circle is denoted by s0 . It is computed based on
rd

2 − s02 = rs
2 − (V T + s0)

2. In Eqn. (10), the probability
pγ(i) equals the detection probability that a sensor exists
in the cross hatched areas inside the interval [−rd, rd]. We
subtract pγ(i) because it is counted twice.

E. Case Five

When V < rs−rd
T , the intruder moves so slow that it can

not promptly reach the boundary of the detection disc of the
last transmission time. Sensors in front of the intruder may
not be destroyed within one transmission period. Thus, it is
possible that the intruder may be detected by the same sensor
more than one time. We do not consider this situation since it
seems to be impractical for an intruder.

V. MULTIPLE-SENSING DETECTION MODEL

In this section, we discuss the intrusion detection problem
using the multiple-sensing detection model. We assume that the
number of sensors needed to detect the intruder is m. Similar to
Theorem 2 in [2], the detection probability in the case V ≥ 2rs

T
is

Pm = 1−
m−1∑
i=0

(
N
i

)
(1− p)(N−i)pi (12)

where

p =
n∑
i=0

pα(i)− pε. (13)

Eqn (13) represents the probability that the intruder is within
the sensing area of a sensor. Hence,

m−1∑
i=0

(
N
i

)
(1− p)(N−i)pi (14)

represents the probability that there are no more than m−1 sen-
sors, which can detect the intruder. The proof of this equation

is similar to the proof of theorem 2 in [3]. When
√
dt2−dk2

T <

V <
2
√
dt2−dk2

T or dt−dk
T ≤ V ≤

√
dt2−dk2

T , the detection
probability is of the same form as Eqn. (12) where p equals
n∑
i=0

pα(i)+
n∑
i=1

pβ(i)−pε or
n∑
i=0

pα(i)+
n∑
i=1

(pβ(i) + pγ(i))−pε.

VI. CONDITION MODIFICATION

In this section, we explore two condition modifications
based on our previous analysis. One is that the intruder does
not enter the WSN at time 0. The other is that the intruder
does not always detroy sensors.
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A. Random Entrance Time

If the intruder arrives randomly during (0, T ], the intruder
can not be immediately detected when it enters the ROI. This
is because the intruder avoids the first sampling interval. Thus,
the detection probability corresponding to the same intrusion
distance will decrease. Instead of the detection probability
corresponding to the instant detection, the detection probability
corresponding to the minimal intrusion distance is used. It
has the same form as P2[D ≤ ξ] where ξ is replaced with
the minimal intrusion distance if the single-sensing detection
model is used. If the intruder arrives at t0, the minimal
intrusion distance can be denoted by d = V (T − t0) and the
intruder’s position becomes (R − (nT − t0)V, 0) instead of
(R− nV T, 0) in Eqn. (3) - (11).

B. Random Destruction

Random destruction means that the intruder will randomly
destroy sensors it encounters. This indicates that some sensors
in the destruction region of the intruder may still survive. To
illustrate this situation, we assume that the intruder destroys
sensors right before every sampling time, and the destruction
period is the same as the transmission period. Furthermore,
we assume that sensors are definitely destroyed when they
leave the destruction region. In other words, there is no
sensor existing in the destruction region along the intruder’s
path except the current destruction disc. These assumptions
guarantee that we only need to apply the random destruction
to the sensors inside the detection discs. This part is discussed
using the single-sensing detection model.

We only discuss the random destruction under the con-
straint rd <

√
rs2 − rd2. Assuming that the destroying proba-

bility is pd, we have:

a) If 2rd
T < V <

2
√
rs2−rd2
T , the destruction regions are not

overlapped and the detection probability is

P2[D ≤ nV T ] = 1−

{1−
n∑
i=0

(pα(i) + (1− pd)pδ(i)) +
n∑
i=1

pβ(i)− pε}N (15)

where pδ(i) equals∫ R−iV T+rd

R−iV T−rd

∫ dγ

−dγ
fxy(σ)gxy(iT )dydx. (16)

b) If V < 2rd
T , the destruction discs partially overlap each

other. Because of the overlap, the sensors may detect the
intruder more than one time. The result will be complicated if
destructions in the overlapping area are not independent.

To simplify the derivation, we assume that the destructions
are carried out independently. Thus, we utilize (1− pd)2 to
indicate the probability that a sensor still survives after two
rounds of destruction. Therefore, the probability that a sensor
survives the first round of destruction but not the second round
of destruction can be expressed as (1− pd)pd.

We use s1 to represent the distance from the intersec-
tion points of two destruction discs to the Y-axis. Because
rd

2 − s12 = (V T2 )2, we can get

s1 =

√
rd2 − (

V T

2
)2. (17)

Then, we can just add the term∫ s1

−s1

∫ R−iV T+
√
rd2−y2

R−(i−1)V T−
√
rd2−y2

fxy(σ)gxy(iT )(1− pd)pddxdy (18)

to the second summation in Eqn. (10).

VII. RESULTS AND DISCUSSION

To validate our analytical results, we calculated the theoret-
ical results corresponding to the single-sensing detection model
as well as to the multiple-sensing detection model. Then,
we compared our theoretical results with the Monte-Carlo
simulation results. The Monte-Carlo simulation results were
generated by averaging 104 simulation results. By averaging
a large number of simulation results, we believe our Monte-
Carlo simulation results will closely match the real experiment
results.

The ROI was a square with side length a = b = 100m.
The transmission period T was 1s. The target was located
at the center of the ROI. The intruder entered the ROI at
time 0 from an arbitrary point with distance R = 30m to
the target. The maximum intrusion distance was set to ξ = 0m
for simulations of instant detection and to 20m for others. The
destruction radius rd was set to 1m. In the simulations in Sec-
tion VIII(A)&(B), the detection radius and the identification
function were set as rs = 2m and gxy(iT ) = 1 respectively.
Their values for the rest simulations are presented in Section
VIII(C). After building the coordinate system, we assume that
the intruder appeared at point (R, 0). Then, the probability that
the intruder would be detected was computed.

To calculate the analytical results, sensors were deployed
according to the two-dimensional uniform distribution or the
two-dimensional Gaussian distribution. The PDF of the unifor-
m distribution was f(x, y) = 1/ab where x, y ∈ [−50, 50]. The
PDF of the Gaussian distribution was Eqn. (1) with σ = 25. In
the Monte-Carlo simulation, sensors were deployed according
to the same distributions as to those in the theoretical results.

In figures of this section, solid lines represents the ana-
lytical results and dash-dot lines represents the Monte-Carlo
simulation results. The meanings of the curves are determined
by the line shapes. For example, solid lines with diamonds in
figures stand for the analytical results of the case one simula-
tion when the single-sening detection model was used and the
distribution of sensors followed the gaussian distribution. Full
legends can be found under Fig. 8, 12 and 13.

A. Simulation for Case One, Three and Four

In simulations corresponding to case one, we set the
intruder speed to V = 5 m/s > 2rs

T . For case three, we
set the speed to V = 2.5 m/s, which was in the range

[

√
rs2−rd2
T ,

2
√
rs2−rd2
T ]. For case four, we set the speed to

V = 1.5 m/s, which satisfied the restriction rs−rd
T ≤

V ≤
√
rs2−rd2
T . For the simulations using the multiple-sensing

detection model, we set m = 3, which means that the intruder
is identified if it is detected by three sensors.

In Fig. 8-11, all dashed lines match the corresponding solid
lines, which means the Monte-Carlo simulation results validate
the analytical results under the single-sensing detection model
and the multiple-sensing detection model. This indicates that
the equations of the detection probability we derived are
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Fig. 8. Detection probability corresponding to the single-sensing detection
model when V = 5 m/s. Solid line+diamond: analytical ξ = 20m &
gaussian, solid line+pentagram: analytical ξ = 20m & uniform, solid line+x-
mark: analytical ξ = 0m & gaussian, solid line+star: analytical ξ = 0m
& uniform; dashed line+circle: Monte-Carlo ξ = 20m & gaussian, dashed
line+plus: Monte-Carlo ξ = 20m & uniform, dashed line+square: Monte-
Carlo ξ = 0m & gaussian, dashed line+triangle (up): Monte-Carlo ξ = 0m
& uniform. (The legends in Fig. 9-12 are the same as these here.)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of sensors deployed (N)

D
e

te
c
ti
o
n
 p

ro
b
a

b
ili

ty

Fig. 9. Detection probability corresponding to the multiple-sensing detection
model when V = 5 m/s.

correct. We can also see that decreasing the speed of the
intruder could increase the detection probability when the
intruder travels the same distance. This is because information
from more sampling periods can be used.

By comparing these results, we found that the detection
probability was higher when sensors were deployed following
the Gaussian distribution instead of the uniform distribution.
The reason is that the sensors deployed following a Gaussian
distribution tend to concentrate at the center, they are more
likely to detect the intruder than the sensors deployed following
the uniform distribution when the intruder is close to the target.

B. Effect of Randomly Destroying

In this subsection, we used the same parameters as those
for case one. We set the destroy probability to 0.5 without
considering the relative position or other factors. Fig. 12 shows
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Fig. 10. Detection probability corresponding to the single-sensing detection
model when V = 2.5 m/s.
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Fig. 11. Detection probability corresponding to the single-sensing detection
model when V = 1.5 m/s.
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Fig. 12. Detection probability of randomly destroying intruder corresponding
to the single-sensing when V = 5 m/s. Additional legends: sol-
id line+triangle (left): analytical randomly destroying & gaussian, sol-
id line+hexagram: analytical randomly destroying & uniform; dashed
line+triangle (down): Monte-Carlo randomly destroying & gaussian, dashed
line+triangle (right): Monte-Carlo randomly destroying & uniform.
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Fig. 13. Detection probability of different identification functions
corresponding to the single-sensing when V = 10 m/s. Solid line+diamond:
analytical σ = 1 & gaussian, solid line+pentagram: analytical σ = 1 &
uniform, solid line+x-mark: analytical σ = 2 & gaussian, solid line+star:
analytical σ = 2 & uniform; dashed line+circle: Monte-Carlo σ = 1
& gaussian, dashed line+plus: Monte-Carlo σ = 1 & uniform, dashed
line+square: Monte-Carlo σ = 2 & gaussian, dashed line+triangle (up):
Monte-Carlo σ = 2 & uniform.

that randomly destroying resulted in the increased detection
probability compared to completely destroying. Furthermore,
lower random destroy probability leads to the higher detection
probability. When the random destroy probability drops to
0, the intruder will not destroy any sensor. The detection
probability of the intruder that does not destroy sensors is
higher than the detection probability of the destructive intruder
(Fig. 12). Due to space limitation, we do not demonstrate the
figure of this kind of intruder.

C. Effect of Identification Function gxy(iT )

The effect of the identification function gxy(iT ) was also
investigated in the simulations. The two functions used in our
simulations were

gxy(iT ) = erfc(

√
(x−R+ iTV )2 + y2√

2σ
)

=
2√
π

∫ √(x−R+iTV )2+y2√
2σ

∞
e−t

2

dt (19)

where σ = 1 and σ = 2. In the simulations, we set the speed
of the intruder to V = 10 m/s. We also changed the detection
radius of sensors accordingly. Since the identification functions
we used were very similar to the cumulative distribution
function (CDF) of a normal distribution, we set the radius
of the detection discs to rs = 3σ, which was 3m and 6m for
σ = 1 and σ = 2 respectively. Therefore, the probability that
a sensor can identify an intruder outside its detection region
is nearly zero. Then, we set to 0 the probability that a sensor
located outside of the detection discs identifies the intruder
and calculate the detection probability only with the sensors
locating inside the detection discs. According to the discussion
in Section IV, the simulations with σ = 1 correspond to case
one while the simulations with σ = 2 correspond to case three.

Comparing Fig. 13 with Fig. 8 and 10, we found that

the identification function decreased the detection probabil-
ity. The gxy(iT ) with the smaller σ resulted in the lower
detection probability. The reason is that the detection radius
corresponding to a smaller σ is shorter than the detection radius
corresponding to a larger σ. As the destruction region is fixed,
more sensors, which may sense the intruder, will survive when
σ is larger.

VIII. CONCLUSION

In this paper, we have investigated the intrusion detection
problem, in which the intruder can destroy sensors in its
surrounding region. This new problem was solved through
theoretical analysis and our theoretical results were verified
through simulations. Moreover, both of the theoretical and
experimental results show that the detection probability was
lower when the intruder could destroy sensors. We also found
that the detection probability was higher when sensors were
deployed according to a Gaussian distribution instead of a
uniform distribution.
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