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Abstract—We improve the performance of a pixel enhancement
algorithm for high-speed camera (HSC) imaging. HSCs have a
principle problem that the number of pixels decreases when the
number of frames per second (FPS) increases. To suppress this
problem, our optical setup is organized with a digital mirror
device (DMD) array to randomly select pixels in each frame. A
small number of selected pixels are recorded by an image sensor.
Then, our algorithm reconstructs the entire image only from
those randomly selected pixels by exploiting not only the sparsity
within the each frame, but also that of difference image between
adjacent frame. In this paper, we improve the performance of
the algorithm in the sense of two aspects. First, we improve
the accuracy of the proposed algorithm by exchanging the role
of two functions in the convex optimization algorithm. Further,
we accelerate the algorithm by setting a better initial value.
Simulation results show that the reconstructed image quality is
slightly improved and the algorithm is accelerated by several
percent.

I. INTRODUCTION

A recent popular imaging tool is high-speed camera, which
are capable of capturing images more than one hundred frames
per second (fps). That enables us to observe things that are too
fast to see for human eyes. Major fields that exploit high-speed
cameras include engineering measurements, sports training,
and entertainment. Casual use is also getting popular because
“iPhone 6” series and “Go Pro Hero 4” are able to capture
images at 240 and 120 fps, respectively.

One issue of high speed cameras is the decrease of pixels
when fps increases. This is a principle problem, irrespective
on products or companies. The reason of this phenomenon is
that time for swipe out is proportional to the number of image
pixels while the increase of fps number suppresses the time for
swipe out. Our goal is to keep the number of pixels as high as
possible even when fps increases. To this end, we suppose an
optical setup shown in Fig. 1. The digital mirror devise (DMD)
array randomly selects a small number of pixels, say 25%, and
these pixels are recorded by the image sensor equipped above.
This is a multiple pixel version of the so-called single pixel
camera [1]. Then, an image processing technique recovers the
entire original image by filling in the missing pixels. Many
methods relevant to this recovery problem have been proposed
so far [2]–[7]. Wakin et al. regarded this problem as a three
dimensional sensing problem [2]. It is, however, difficult to
implement such a sensing mechanism in high speed cameras.
Kang and Lu exploited similarities between adjacent frames
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Fig. 1. Proposed optical setup for pixel enlargement in high speed camera
image acquisition.

[3]. They changed the compression rate depending on key or
non-key frames. However, such change of compression rate
is difficult in high speed cameras because of a limited swipe
out time. Vaswani proposed methods supposing that sparsity
pattern (support of the sparsifying transform vector) changes
slowly over time [4], [5]. It is, however, difficult to choose
appropriate thresholds for adding and deleting a small part of
the support. Another approach is based on dictionary learning
[6]. This approach requires a very high computational cost.
To reduce the cost, images are divided into small patches,
which results in block noise and occasionally the need for post
processing [8], [9]. Chang et al. treated a sequence as a long
vector [7]. This approach also results in a huge computational
cost.

The present authors have proposed a pixel enhancement
algorithm that quickly reconstructs the entire image frame
by frame without changing the compression rate. This algo-
rithm exploits sparsity of two types. One is that within each
frame. The second is sparsity of difference image between
adjacent frames. As is well-known, sparsity is promoted by
the ℓ1 norm. Hence, promotion of two types of sparsity is
formulated as a cost function of the sum of two ℓ1 norms
of coefficients of sprarsifying transform and the difference of
adjacent frames. By minimizing this cost function under the
observation constraint, image sequence is reconstructed. The
minimization problem is efficiently solved by a convex opti-
mization technique of the Douglas-Rachford splitting (DRS)
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algorithm [10].
In this paper, we further improve the performance of the

algorithm in the sense of two aspects. First, we improve the
accuracy of the proposed algorithm by exchanging the role
of two functions in the convex optimization algorithm. In
theory, the treatment of these two functions does not affect
the results of the algorithm. In practice, however, the previous
assignment of the two functions in the DRS algorithm enforced
the observation constraint only approximately. If we replace
the assignment, the constraint is enforced rigorously at each
step. This improves the quality of the image at each step, and
thus the final result too. Second, in the previous algorithm,
the zero vector was set for the initial value. By changing this
by a more appropriate vector, we accelerate the algorithm. We
show the effectiveness of the proposed two improvements by
computer simulations.

The rest of the present paper is organized as follows. In
Section 2, we formulate the image reconstruction problem and
review the previously proposed algorithm. Section 3 proposes
revisions of the proposed algorithm and shows its effectiveness
by simulations. Section 4 evaluates robustness of the proposed
algorithm by changing the compression rate and the number
of frames per second. Section 5 concludes the paper.

II. PROBLEM FORMULATION

Suppose that a high speed camera captures a scene at a high
frame rate and a sequence of images xr ∈ RN (r = 1, . . . , R)
is obtained1. Pixels in the rth image xr are randomly selected
in the following manner: each image is divided into local
blocks of 2× 2 or 4× 4 pixels and several pixels out of each
block are selected randomly. The number of remaining pixels
for the entire image is denoted by M . Thus, the compression
rate is M/N . Let Ar and yr ∈ RM be a random selection
matrix that reflects the aforementioned manner and a vector
consisting of the selected pixels. Then, it holds that

yr = Arxr, (r = 1, 2, . . . , R). (1)

Note that the random selection pattern in Ar is generated at
every frame, not fixed. By selecting pixels randomly, instance
nullspace property is satisfied with high probability. Hence, a
good accuracy is achieved. Our goal is to estimate the image
sequence {xr}r=1,...,R from {Ar}r=1,...,R and {yr}r=1,...,R.
Because of this goal, we do not take blur nor noise into
account. We solved this problem by using two priors. First, we
suppose that each captured image is sparse in an appropriate
sparsifying transform domain, such as discrete wavelet or
cosine transform domains. In simulations, we adopted discrete
cosine transform (DCT) for the sparsifying transform since
the target image sequence is about a natural scene. Second,
because of the high frame rate, the difference between adjacent
frames is small. Further, if only a small part in the scene
is moving and other objects do not move so much, then
the difference is not only small, but also sparse. Based on
these two assumptions, we reconstruct the image xr by using

1Images are raster scanned and regarded as column vectors.

the following cost function for the DCT coefficient vector
u = (un) ∈ RN :

ûr = arg min
ArCTu=yr

{ ∥u∥1+λ∥CTu−x̂r−1∥1 } (r = 2, . . . , R),

(2)
where ∥·∥1 is the ℓ1 norm of the corresponding vector and CT

is the transpose of the two-dimensional DCT matrix C, thus
the inverse transform. The rth frame xr is then estimated by
x̂r = (x̂r,n) = CT ûr. For r = 1, we obtain û1 by setting 0
for λ, thus (2) amounts to the standard ℓ1 norm minimization
as in the compressed sensing [11].

The problem (2) was solved by using the Douglas-Rachford
splitting (DRS) algorithm [10]. Let S be a set of u satisfying
ArC

Tu = yr. This is a convex set. Then, (2) is equivalent to

ûr = arg min
u∈RN

{ ∥u∥1 + λ∥CTu− x̂r−1∥1 + ıs(u) }, (3)

where ıs(u) is the indicator function that takes value 0 if u ∈
S, +∞ else. Now, our problem becomes the minimization of
the sum of three convex terms, which are not differentiable but
proximable. As is well known, the proximity operator of the
first term ∥u∥1 is proxθ∥·∥1

(u) = (softthreshold(un, θ)) ∈
RN with θ = 1, where

softthreshold(u, θ) =


u− θ if u ≥ θ,

u+ θ if u ≤ −θ,
0 if − θ < x < θ.

(4)

Let us denote the sum of the second and the third terms by
g(u). The proximity operator of g(u) can be computed by the
following operations. First, apply the inverse two-dimensional
DCT to u as CTu ≡ x = (vn) ∈ RN . Then, for the pixels in
the mask Ar, replace the values vn by the the corresponding
element of yr. For the other pixels, apply the operation

vn ← softthreshold(vn − x̂r−1,n, λ) + x̂r−1,n. (5)

Finally, apply the two-dimensional DCT to the updated vector
x for returning to the DCT domain. These operations result
in proxg(u).

Based on these observations, the problem (2) was solved as
follows. First, (3) is viewed as

ûr = arg min
u∈RN

{ ∥u∥1 + g(u)},

where both terms are non-differentiable but proximal. Then,
the problem (2) was solved by the following DRS algorithm:

Algorithm 1: Image recovery for rth frame
Input: yr, Ar, x̂r−1

Output: x̂r

1. Set γ > 0, δ ∈ ]0, 2[
2. Set zero vector for v as an initial value.
3. Repeat the following two operations:

ur ← proxγ∥·∥1
(v),

v ← v + δ{proxγg(2ur − v)− ur},
until a stopping condition is met.

4. Compute x̂r = CTur
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The proximity operator proxγg is computed by replacing
λ in (5) by γλ. For simple presentation, we explained the
algorithm using the raster scan, which results in huge sensing
and DCT matrices. We implemented however, programs by
Matlab exploiting a two-dimensional expression to reduce both
computational time and memory use. Thus, we can compute
relatively high dimensional images, say 256×256, which was
not computed by the method in [5] provided from [12].

III. IMPROVEMENT OF ALGORITHM

To further improve the performance of the algorithm, we
revise Algorithm 1 in the sense of two aspects. First, we
exchange the assignment of two proximity operators in the
algorithm. In theory, the treatment of these two functions does
not affect the results of the algorithm. In practice, however,
the assignment in Algorithm 1 did not completely guarantee
the observation constraint at each step. By exchanging the
assignment, the constraint is enforced rigorously at each step
and directly onto the output variable ur of the algorithm. This
improves the quality of the image at each step, and thus the
final result too. Second, in Algorithm 1, the zero vector was
set as the initial value for the parameter v. Instead, we use a
DCT coefficient vector v0 for the image in which the missing
pixels are filled by the observed pixel in the same block. This
image should be closer to the target image than the black (all
zero) image. Hence, we can expect a faster convergence than
using the black image. Our algorithm is finally updated in the
following form:

Algorithm 2: Image recovery for rth frame
Input: yr, Ar, x̂r−1

Output: x̂r

1. Set γ > 0, δ ∈ ]0, 2[
2. Compute the vector v0

3. Set v0 for v as an initial value.
4. Repeat the following two operations:

ur ← proxγg(v),
v ← v + δ{proxγ∥·∥1

(2ur − v)− ur},
until a stopping condition is met.

5. Compute x̂r = CTur

To evaluate the performance of the algorithm, we conducted
simulations. Two image sequences were captured by a high
speed camera, Optronis CR450x3, nac Image Technology.
One is a water balloon bursting scene and the other is the
moment of impact between a tennis racket and a ball. For both
sequences, 210 frames of uncompressed 256× 256 images at
6,000 fps were obtained.

Pixels in these images were selected in the aforementioned
manner. Here, one pixel was selected out of 2×2 pixel blocks.
Thus, the compression rate for this simulation is 25%. Figs. 4
and 5 show examples of reconstructed images by Algorithm
2 with λ = 0.5 and 0, respectively. Figs. 2 and 3 show the
peak signal to noise ratio (PSNR) in dB of the reconstructed
image x̂r with respect to the frame number r, defined as

PSNRr = 20 log10
255
√
N

∥x̂r − xr∥2
[dB],
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Fig. 2. PSNR [dB] of the reconstructed images about a water balloon bursting
scene.
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Fig. 3. PSNR [dB] of the reconstructed images about the moment of impact
by a tennis racket and a ball.

where N is the number of pixels. The red line shows PSNRr of
the reconstructed images by the revised algorithm (Algorithm
2) with λ = 2 while the blue line shows PSNRr of the
reconstructed images by Algorithm 1 with λ = 2. The averages
of PSNRs were 30.21dB and 36.33dB for Figs. 2 and 3,
respectively, when images were reconstructed by Algorithm 2.
On the other hand, the averages were 30.15dB and 36.29dB for
Figs. 2 and 3, respectively, when images were reconstructed by
Algorithm 1. This means that the image quality was improved
by 0.06dB and 0.04dB, respectively. The green line shows
PSNRr of reconstructed images by Algorithm 2 with λ = 0.5.
The averages are 31.31dB and 36.46dB for Figs. 2 and 3,
respectively. The maximum value with λ = 2 is better than that
with λ = 0.5, but the average is 1.1dB better with λ = 0.5 than
the Algorithm 2 with λ = 2 on Fig. 2. The black line shows
PSNRs obtained by Algorithm 2 with λ = 0, which means that
images are reconstructed without referring the previous frame.
The average of PSNRs were 28.92dB and 34.42dB for Figs.
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Original image Block random observation

Reconstructed image of Algorithm 2 with λ = 0.5 (34.92dB) Reconstructed image of Algorithm 2 with λ = 0 (33.05dB)

Fig. 4. The image is a water balloon bursting scene.

Original image Block random observation

Reconstructed image of Algorithm 2 with λ = 0.5 (34.9dB) Reconstructed image of Algorithm 2 with λ = 0 (33.43dB)

Fig. 5. The reconstructed image which is impact between a racket and a boll.
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Fig. 6. PSNR [dB] of the reconstructed images about a water balloon bursting
scene.

Fig. 7. PSNR [dB] of the reconstructed images about the moment of impact
by a tennis racket and a ball.

2 and 3, respectively. These results show the effectiveness of
the reference to the previous frame.

Computational time for the water-ballon sequence was
0.460 and 0.475 seconds by Algorithms 2 and 1, respectively.
This means that the computational time was reduced by 3.16%.
On the other hand, that for the tennis sequence was 0.456
and 0.472 seconds by Algorithms 2 and 1, respectively. This
means that the computational time was reduced by 3.39%.
These results show the effectiveness of the revised algorithm.

IV. EVALUATION OF ROBUSTNESS

To evaluate the robustness of the proposed algorithm, we
first reduced the compression rate as 25%, 18.75%, 12.5% and
6.25%. This is done by choosing 1, 2, 3, and 4 pixels from 4×4
blocks. The same image sequences as in Section 3 were used
in this simulation. Figs. 6 and 7 show the average of PSNRs of
reconstructed images with respect to the compression rate for
the water balloon and the tennis image sequences, respectively.
The red and black lines indicates the PSNRs when λ is 2 and
0, respectively. We can confirm that the proposed algorithm
keeps a better PSNR average than that without referring the
previous frame.

We also reduced the number of frames per second as 1000,

Fig. 8. Average of PSNRs in terms of the frame per second.

500, 250, and 125. The average of the PSNRs are shown
in Fig. 8. We can see that, even though the number of FPS
decreases, the average of the PSNR does not decrease so much,
showing the robustness against the FPS reduction.

V. CONCLUSION

We proposed revision of the previously proposed pixel en-
hancement algorithm for high-speed camera image acquisition
in the sense of two aspects. First, we improved the accuracy
of the proposed algorithm by exchanging the role of two
functions in the convex optimization algorithm. Second, we
accelerated the algorithm by setting a better initial value.
Simulation results showed the effectiveness of the proposed
revision.
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