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Abstract—Channel equalization is a crucial part of the OFDM
communications protocols, which in turn requires channel esti-
mation. In this paper, we consider the problem of orthogonal pilot
design in MIMO-OFDM systems for sparse channel estimation.
The pilot design in MIMO scenarios compared to the conven-
tional SISO case has the additional constraint that the capability
of recovery should be uniformly provided for all single channels.
For instance, perfect estimation of a channel at the cost of another
one is not permitted. This requirement is even more significant
in the emerging Massive-MIMO systems. Our pilot design is
based on the compressed sensing technique of minimizing the
coherence measure of the Fourier submatrix associated with the
pilot subcarriers. However, we desire to minimize the coherence
value of such matrices simultaneously for all channels. Here,
we optimize over both the pilot locations and values. As finding
the global minimizer is a combinatorial problem, we resort to a
greedy method. Although there is no guarantee for the optimality
of the achieved patterns, our simulation results confirm their
suitability in practice.

Index Terms—OFDM, Pilot Design, Sparse channel estimation,
Compressive Sensing, Massive MIMO

I. INTRODUCTION

OFDM channel estimation has been one of the main con-
cerns of the researchers, and many OFDM channel estimation
methods have been developed so far. Recent studies reveal
that some wireless channels such as mmWave channels, high
definition television (HDTV), and underwater acoustic chan-
nels have sparse structures [1]–[4]. Considering the sparse
structures of the channels results in the design of algorithms
with better performance and lower pilot overhead [5]–[7].
Therefore, many researchers have used Compressive Sensing
(CS) theory [8], [9] for sparse channel estimation [5]–[7].

To efficiently utilize CS for sparse channel estimation in
OFDM systems, the pilot symbols should be designed prop-
erly. In [7] it is shown that random pilot locations can guaran-
tee the perfect channel reconstruction. However, random pilots
are not applicable in practical systems [10]. Therefore, some
pilot design schemes are proposed to design deterministic
pilots [10]–[14]. The deterministic pilots are designed based
on minimizing the coherence of the measurement matrix [10]–
[14]. Under some specific conditions, it is shown in [10] and
[12] that the pilot locations designed according to the cyclic
difference sets (CDS) are optimum. However, in practical
systems the necessary conditions for existence of the CDSs
are not satisfied. Therefore, a greedy method is proposed in

[10], to design suboptimal pilot patterns. The authors of [12]
propose three different schemes for suboptimal pilot pattern
design, where two methods are based on stochastic search
and the other one applies a tree-based searching structure. In
[13] and [14], it is shown that joint design of pilot pattern
and power results in better performance. Both the methods
in [13] and [14] decouple the joint design of pilot pattern and
power into the disjoint pattern and power design sub-problems
and solve them sequentially. The pilot design method of [13]
is only applicable for the cases where either CDS or almost
different set (ADS) exist. In [13], the exhaustive search for
finding the optimal pilot pattern and powers is implemented
using backtracking which reduces the computational cost in
many cases. Another OFDM pilot design is introduced in
[14] for the application of cognitive radios. Replacing the
exhaustive search for the pilot locations with a sequential
stochastic search is shown to achieve descent results with
tolerable computational cost [12].

To have interference-free channel estimation in multiuser
and MIMO OFDM systems, orthogonal pilot design is a
common technique; in this approach, pilot subcarriers of all
users occupy distinct frequencies and do not coincide with any
of the data subcarriers. In this paper we do not consider non-
orthogonal settings, as they suffer from pilot contamination, an
undesired effect that can severely limit the overall performance
[15], [16]. Beside the orthogonality, multiple pilot sequences
should be designed in a fair manner. By fair design of pilots,
we mean all the pilot sequences should estimate CSI with the
same quality under the same conditions.

In CS based channel estimation, fair design of pilots results
in the design of measurement matrices with equal coherence
value. MIMO-OFDM pilot pattern design for sparse channel
estimation is considered in [11], [12]. To have fair pilot
sequences, the authors in [11] use genetic algorithm (GA)
to generate a core pilot sequence and design the other pilot
sequences by shifting the entries of the core pilot sequence.
In [12] the single user pilot pattern design algorithms are
extended to the MIMO case, and two methods are proposed
based on the stochastic search. In one method they sequentially
design pilot sequences for multiple antennas. In the other
method, to prevent unfair pilot design, they jointly design
multiple pilot sequences.

In this paper, we consider the pilot design for MIMO-
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OFDM sparse channel estimation. The joint design of pilot
pattern and power is considered based on minimizing the co-
herence of the measurement matrix. We decouple the problem
in to the disjoint subproblems of pattern design and pilot
allocation, and sequentially solve them. Different from the
methods in [11] and [12], the pilot patterns are determined
deterministically in a greedy manner. To find the pilot powers,
like [14] we cast the pilot power problem as a SOCP problem.
In order to design fair pilot sequences we design the algorithm
based on minimizing the maximum coherence value of the
transmitters. Simulation results show that the pilot pattern
designed by the proposed method outperforms the others in
terms of designing sensing matrices with smaller coherence
and estimating channels with lower MSE.

The rest of the paper is organized as follows. The MIMO-
OFDM pilot design problem is formulated in Section II.
Section III considers the pilot power allocation. Section IV
presents the MIMO-OFDM pilot design algorithm. The simu-
lation results are given in Section V. Finally, conclusions are
provided in Section VI.

The following notations are used throughout the paper.
Matrices and vectors are represented by boldface upper case
and boldface lower case letters, respectively. The entry at the
i-th row and the j-th column of A is denoted by [A]i,j .
a(i) stands for the i-th entry of a vector a. 1 and 0 mean
a vector with all-one entries and a vector with all-zero entries,
respectively. a > 0 means that all the entries of the vector
a are greater than 0. [ · ]T and diag{·} denote the transpose
and the diagonal matrix, respectively. 〈a,b〉 denotes the inner
product of a and b. The sets N and L are defined as
N =

{
1, 2, · · · , N

}
and L =

{
1, 2, · · · , L − 1

}
. Z stands

for the integer numbers set, and ∅ shows the empty set.

II. PROBLEM FORMULATION

Consider a MIMO-OFDM system, where the transmitter
and the receiver employ nT and nR antennas, respectively.
The signals are transmitted on N subcarriers. To estimate
the channels at the receiver, each transmit antenna occupies
NP subcarriers for pilot symbol transmission. The pilot sub-
carriers assigned to the i-th transmit antenna are denoted as
Pi =

{
pi,1, pi,2, · · · , pi,NP

}
, where we assume that 1 ≤

pi,1 < pi,2 < · · · < pi,NP ≤ N . In order to have interference
free channel estimation, we use frequency orthogonal pilot
transmission strategy, which means that Pi ∩ Pj = ∅ for
1 ≤ i, j ≤ nT and i 6= j. Under such assumption, MIMO-
OFDM channel estimation is decomposed into simultaneous
estimation of nT × nR SISO-OFDM channels. Representing
the pilot symbols transmitted by i-th transmit antenna as xi =
[xi(1), xi(2), · · · , xi(NP )]T , the associated received vector at
j-th receive antenna, yj,i = [yj(pi,1), · · · , yj(pi,NP )]T , can
be written as,

yj,i = XiFihj,i + nj,i. (1)

Here, Xi = diag
{
xi(1), xi(2), · · · , xi(NP )

}
, hj,i =

[hj,i(1), · · · , hj,i(L)]T represents the channel impulse re-
sponse between (j, i)-th receiver-transmitter pair, and nj,i =

[
nj(pi,1), n(pi,2), · · · , n(pi,NP )

]T
shows the additive white

Gaussian noise (AWGN), which is modeled as nj,i ∼
CN (0, σ2INP ). the j-th receive antenna noise at the pilot
subcarriers assigned to the transmitter i. Also, Fi is a DFT
submatrix with elements defined as

[
Fi

]
n,l

= e−j
2π
N (n−1)(l−1)

for n ∈
{
pi,1, pi,2, · · · , pi,NP

}
and l ∈

{
1, · · · , L

}
. Defining

Φi = XiFi, (1) can be written as

yj,i = Φihj,i + nj,i. (2)

Here, we refer to Φi as the measurement matrix for i-th
transmitter.

We assume that the channel hj,i is a k-sparse vector of
length L, meaning that hj,i has at most k non-zero elements
where k � L. Therefore, the CS theory can be applied for
estimation of hj,i with significantly less number of pilots than
conventional methods. In [8], it is shown that if the measure-
ment matrix satisfies the Restricted Isometry Property (RIP),
then hj,i can be reconstructed from yj,i with an overwhelming
probability. However, there is no polynomial time algorithm
to check whether a matrix satisfies the RIP [17]. A common
alternative to guarantee the perfect reconstruction of sparse
signals is the coherence of the measurement matrix. Coherence
of a matrix is defined as the maximum cross-correlations
between its normalized columns. The coherence condition is
stronger than RIP, and can be evaluated easily. Therefore,
many sparse channel estimation methods have used coherence
as a basis for designing pilot signals.

In (2), the coherence of Φi is formulated as

µΦi
= max

1≤m,n≤L
m6=n

|〈φm, φn〉|
‖φm‖2 · ‖φn‖2

(3)

= max
1≤m,n≤L

m6=n

∣∣∣∑NP
j=1|xi(j)|

2e−j
2π
N pi,j(m−n)

∣∣∣∑NP
j=1|xi(j)|2

.

Here, µΦi represents the coherence of Φi, and φm denotes
the m-th column of Φi. According to the periodic structure of
Φi, the cross-correlation between φm and φn only depends on
the difference between the indices m and n. Therefore, letting
r = m− n, µΦi can be written as,

µΦi = max
r∈L

∣∣∣∑NP
j=1|xi(j)|

2e−j
2π
N pi,jr

∣∣∣∑NP
j=1|xi(j)|2

(4)

The sparse recovery methods such as `1 minimization and
greedy methods, are guaranteed to perfectly recover hj,i when
µΦi

< 1
2k [18]. Therefore, we design the pilot symbols based

on minimizing the coherence of the measurement matrix.
Most of the OFDM pilot design methods proposed for sparse
channel estimation only consider the design of pilot pattern
and assume equal powers for all pilots. However, according
to (4), it is obvious that besides the pilot locations, the pilot
powers can control the value of µΦi

. Consequently, as in [13]
and [14], we consider the joint design of pilot pattern and pilot
power based on minimizing the coherence of the measurement
matrix.
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Therefore, the pilot design problem for i-th transmit antenna
is formulated as

Ωopt
i = arg min

Ω
µΦi (5)

= arg min
Ω

max
r∈L

∣∣∣∑NP
j=1 vi(j)e

−j 2π
N pi,jr

∣∣∣∑NP
j=1 vi(j)

.

Here, vi(j) denotes the power assigned to the j-th pilot symbol
of transmitter i, i.e., vi(j) = |xi(j)|2. Ω is the feasible set and
is defined as Ω =

{
vi,Pi

}
, where vi = [vi(1), · · · , vi(NP )]T .

Also in (5), Ωopt
i =

{
vopt
i ,Popt

i

}
, where

vopt
i = [vopt

i (1), · · · , vopt
i (NP )]

Popt
i =

{
popt
i,1 , · · · , p

opt
i,NP

}
. (6)

The pilot design problem of (5) is a joint optimization of
continues and discrete variables, and finding optimal solution
for it is almost impossible. Therefore, to find the suboptimal
pilot powers and pattern, we disjoint (5) into the pilot and pat-
tern optimization subproblems and solve them in a sequential
manner.

III. PILOT POWER DESIGN

Assume that P =
{
pi,1, · · · , pi,m

}
represents the m pilot

locations for i-th transmit antenna. For the given pilot pattern,
the optimal pilot powers are found through the following
optimization problem.

vopt
i = arg minvi max

r∈L

∣∣∣∑m
j=1 vi(j)e

−j 2π
N pi,jr

∣∣∣∑m
j=1 vi(j)

s.t. vi > 0 (7)

According to (4), if vopt
i is a solution for (7), then vi =

[αvi(1), · · · , αvi(m)]T will be another solution for (7) for any
α > 0. Therefore, we propose to put the following constraint
on the pilot powers.

m∑
j=1

vi(j) = 1. (8)

Obviously, while making the search region as small as possi-
ble, the proposed power constraint preserves all the solutions
of (7). Considering the pilot powers constraint of (8), and
defining g(P,vi) as

g(P,vi) = max
r∈L

∣∣∣∣∣∣
m∑
j=1

vi(j)e
−j 2π

N pi,jr

∣∣∣∣∣∣ , (9)

the power allocation problem for a given pilot pattern of P is
written as

vopt
i = arg min

vi∈V
g(P,vi) (10)

where

V =
{
vi|

m∑
j=1

vi(j) = 1, vi(j) > 0 ∀j
}
.

As mentioned in [14], (10) can be casted as a SOCP problem
which can be solved using convex optimization packages such
as CVX [19] and MOSEK [20].

IV. MIMO-OFDM PILOT DESIGN ALGORITHM

To design orthogonal pilot sequences for all the transmit
antennas, (5) should be considered simultaneously for i =
1, · · · , nT . Since there is no priority between the transmit
antennas, the pilots should be designed fairly. By fair design
of pilots, we mean that all the measurement matrices should
have the same coherence value. According to (4), it is obvious
that if P∗i =

{
p∗i,1, · · · , p∗i,NP

}
is a solution for (5), then

Pi =
{
p∗i,1 + q, · · · , p∗i,NP + q

}
, achieved by shifting the

entries of P∗i by q ∈ Z, is also a solution for (5). Therefore,
as proposed in [11], one possible method for designing fair
pilot sequences is to generate a core pilot sequence and then
design the other pilot sequences by shifting the entries of the
core sequence. However, this method depends on the available
number of subcarriers N , the number of transmit antennas nT ,
and the number of pilots NP . For instance, consider a case
where N = 256, nT = 16 and NP = 16. To design orthogonal
pilot sequences using the method proposed in [11], each two
consecutive pilot subcarriers of the core sequence should be
spaced at least 16 subcarriers apart, which is similar to the
conventional pilot design methods.

Therefore, in this section we propose a pilot design algo-
rithm to design multiple pilot sequences as fair as possible.
The proposed algorithm is consisted of two parts. In the
first part of the algorithm, nT orthogonal pilot sequences are
designed jointly in NP − 1 steps. Then, in the second part of
the algorithm, we try to improve the achieved pilot patterns
in a limited number of iterations. The detailed algorithm is
presented in Table I. N , nT , NP , L and Imax are the inputs of
the algorithm, where Imax determines the maximum iterations
of the second part of the algorithm.

The first part of the algorithm, indicated from step 1 to
step 6, contains one outer loop and one inner loop. The outer
loop and the inner loop involve NP − 1 and nT iterations,
respectively. Let us define P̂i(n) =

{
p̂i,1, · · · , p̂i,n

}
as the i-th

optimal pilot pattern achieved in the n-th iteration of the outer
loop. In the initialization step we arbitrarily set P̂i(1) =

{
i
}

for i = 1, · · · , nT . The other pilot locations are determined as
follows.
• Given P̂i(n−1), in the n-th iteration of the outer loop, we

sequentially determine the n-th pilot subcarrier of each
transmit antenna through nT iterations of the inner loop.

• In the i-th iteration of the inner loop, form all possible
P =

{
P̂i(n− 1) ∪ p

}
and find f(P) as,

f(P) = min
v∈V

g(P,v). (11)

In the definition of P , p is an element in set An,i, where
An,i contains the available subcarriers which is defined
as

An,i = N \
( i−1⋃

j=1

P̂j(n)

nT⋃
j=i

P̂j(n− 1)
)
. (12)

Evaluating f(P) for all possible sets of P , we find P̂i(n)
as

P̂i(n) = arg min
P

f(P). (13)

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 977 APSIPA ASC 2015



TABLE I
THE PROPOSED MIMO-OFDM PILOT DESIGN ALGORITHM.

Input: N , nT , NP , L, Imax.
1: Initialization: P̂i(1)⇐ {i} for i = {1, · · · , nT }.
2: for n = 2, · · · , NP

3: for i = 1, · · · , nT

4: Obtain P̂i(n) according to (13).
5: end for(i)
6: end for(n)
7: Popt

i ⇐ P̂i(NP ) and C(i)⇐ f(Popt
i ) for i = 1, · · · , nT .

8: for l = 1, · · · , Imax

9: Find s according to (14).
10: Paux ⇐ Popt

s .
11: for n = 1, · · · , NP

12: Obtain Pn according to (15).
13: if f(Pn) < C(s)

14: Popt
s ⇐ Pn and C(s)⇐ f(Pn).

16: end if
17: end for(n)
18: if Popt

s 6= Paux

19: Go to step 8.
20: end if
21: for n = 1, · · · , nT , n 6= s.
22: for m = 1, · · · , NP

23: Evaluate Cperm(n,m).
24: end for(m)
25: end for(n)
26: Find Popt

s and Popt
n∗ using (16).

27: if Popt
s = Paux

28: break.
29: end if
30: end for(l)
31: Using (10), design the pilot powers for each pilot pattern.

At the end of the first part of the algorithm, step 7, we set
Popt
i = P̂i(NP ), and evaluate µΦi

for each transmit antenna,
i.e., C(i) = f(Popt

i ).
The second part of the algorithm, indicated from step 8 to

step 31, contains one outer loop and two inner loops. The outer
loop, the first inner loop and the second inner loop contain
Imax, NP , and nT number of iterations, respectively. In each
iteration of the outer loop we reduce the maximum coherence
of the pilot sequences through the following procedure.
• Given the pilot sequences resulted from iteration l − 1

of the outer loop, i.e., Popt
i for i = 1, · · · , nT , in the

l-th iteration of the outer loop we find the set with the
maximum coherence,

s = arg max
i
C(i). (14)

• Finding s, in the n-th iteration of the first inner-loop, we
evaluate f(P) for all possible P =

{
Popt
s \ popt

s,n

}
∪
{
p
}

.
Here, p is an element in the set N \

⋃nT
i=1 P

opt
i . Then we

find Pn as,
Pn = arg min

P
f(P). (15)

Now, if f(Pn) < C(s), then we set Popt
s = Pn and

C(s) = f(Pn).
• If the maximum coherence is reduced in the first inner

loop, the second inner loop will be skipped; otherwise
we go through the second inner loop. This procedure,
indicated from the step 18 to step 20, is done using the
auxiliary set Paux defined in the step 10.

TABLE II
FREQUENCY-ORTHOGONAL PILOT PATTERNS DESIGNED FOR SPARSE

CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS.

1st antenna 1, 33, 41, 45, 53, 57, 81, 85, 113
133, 149, 157, 173, 233, 245, 253

2nd antenna 2, 34, 42, 46, 54, 58, 82, 86, 114
134, 150, 158, 174, 234, 246, 254

3rd antenna 3, 15, 35, 55, 71, 91, 95, 103, 107
111, 119, 155, 179, 199, 227, 231

4th antenna 4, 16, 36, 56, 72, 92, 96, 104, 108
112, 120, 156, 180, 200, 228, 232

5th antenna 5, 61, 77, 93, 97, 101, 137, 141, 145
165, 169, 197, 205, 217, 225, 249

6th antenna 6, 62, 78, 94, 98, 102, 138, 142, 146
166, 170, 198, 206, 218, 226, 250

7st antenna 7, 19, 47, 51, 79, 99, 123, 159, 167
171, 175, 183, 187, 207, 223, 243

8th antenna 8, 20, 188, 48, 52, 80, 100, 160, 168
176, 208, 124, 224, 184, 244, 172

• In the n-th iteration of the second inner loop, where
n 6= s, we search whether exchanging the entries of Popt

s

with Popt
n reduces the maximum coherence. Therefore,

we repeat the following steps for m = 1, · · · , NP .
1) Form P1 and P2 as,

P1 =
{
Popt
s \ popt

s,m

}
∪
{
popt
n,m

}
P2 =

{
Popt
n \ popt

n,m

}
∪
{
popt
s,m

}
.

and evaluate f(P1) and f(P2).
2) If max

{
f(P1), f(P2)

}
< C(s) then we set

Cperm(n,m) = max
{
f(P1), f(P2)

}
; otherwise

we set Cperm(n,m) = 1.
• At the end of the second inner loop, we search for the best

permutation. The best permutation results in the largest
reduction in the maximum coherence. Therefore, the best
pilot sequences are determined as follows.

(n∗,m∗) = arg min n,m
n=1,··· ,nT and n6=s

m=1,··· ,NP

Cperm(n,m)

Popt
s =

{
Popt
s \ popt

s,m∗

}
∪
{
popt
n∗,m∗

}
Popt
n∗ =

{
Popt
n∗ \ popt

n∗,m∗

}
∪
{
popt
s,m∗

}
. (16)

Note that if the maximum coherence does not reduce at the
end of l-th iteration of the outer loop, then no improvement
will happen in the next iterations of the outer loop. Therefore,
we check this situation in the steps 27 − 29. Finally, at step
31, we find the optimum pilot powers for the resulted pilot
patterns, i.e., Popt

i .

V. SIMULATION RESULTS

In this section, a number of simulations are conducted to
show the performance of the proposed pilot design algorithm.
Obviously, employing orthogonal pilot sequences decouples a
MIMO-OFDM channel estimation into a several SISO-OFDM
ones. Therefore, to evaluate the performance of the proposed
pilot design method, we consider MISO-OFDM system in all
simulations. Note that in all simulations we set Imax = 20.

In the first simulation, we compare the proposed pilot design
algorithm with the method proposed in [12]. We consider

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 978 APSIPA ASC 2015



TABLE III
FREQUENCY-ORTHOGONAL PILOT PATTERNS DESIGNED BY THE METHOD
IN [12] FOR SPARSE CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS.

1st antenna 8, 40, 48, 52, 72, 82, 99, 142, 145
154, 158, 161, 183, 209, 212, 230

2nd antenna 9, 41, 49, 53, 73, 83, 100, 143, 146
155, 159, 162, 184, 210, 213, 231

3rd antenna 10, 42, 50, 54, 74, 84, 101, 144, 147
156, 160, 163, 185, 211, 214, 232

4th antenna 17, 25, 47, 56, 59, 63, 75, 111, 115
130, 141, 149, 153, 174, 200, 250

5th antenna 12, 34, 55, 64, 67, 109, 112, 148, 173
215, 222, 233, 238, 241, 249, 252

6th antenna 2, 15, 45, 58, 62, 66, 96, 103, 107
132, 165, 181, 186, 189, 204, 206

7st antenna 18, 22, 33, 68, 76, 80, 88, 91, 95
116, 133, 167, 198, 205, 229, 246

8th antenna 7, 79, 92, 117, 120, 152, 168, 180
187, 197, 219, 223, 239, 243, 251, 255

an OFDM system with N = 256 and NP = 16. Two
different scenarios are considered for this system. In the first
scenario we set nT = 16, and in the other one the number of
transmitters is set to be nT = 8. The channel length is set to
be L = 60 for i = 1, · · · , nT in both scenarios. The Extension
Scheme 2 proposed in [12] are used for generating multiple
pilot sequences, where the maximum numbers of iterations
for the outer and inner loops are set to be 1000 and 15,
respectively. In all simulations, we have used Mosek package
[20] for power allocation problem, while we have considered
equal pilot powers for the method of [12], ie., vi(n) = 1

NP
for n = 1, · · · , NP and i = 1, · · · , nT .

Figures 1 and 2 present the coherence of the measurement
matrices for different transmit antennas. According to these
figures, the coherence of the measurement matrices designed
by our method have smaller values than those designed by
the Extension Scheme 2 proposed in [12]. Also, the lower
differences between the maximum and minimum coherence
values verify the ability of the proposed method in preserving
the fairness among different pilot sequences. As shown in
Figures 1 and 2, the variance of the coherence values in the
second scenario is less than the variance of the coherences
in the first scenario. This is due to fact that in the case of
nT = 16, all the subcarriers are occupied by the transmitters,
therefore the only way for improving the pattern design is
permutation. But in the second case, nT = 8, only 128
subcarriers should be allocated to transmitters, therefore we
have many choices to improve the pilot pattern design.

We next compare the channel estimation performance of
the pilot patterns used in the second scenario. The pilot
patterns designed by the proposed algorithm and the Extension
Scheme 2 [12] are given in Tables II and III, respectively. The
performance is evaluated in terms of the normalized MSE of
all the channel estimates. We define the normalized MSE as

NMSE =
1

R× nT

R∑
n=1

nT∑
i=1

‖ h(n)
1,i − ĥ

(n)
1,i ‖22

‖ h(n)
1,i ‖22

,

where R is the number of channel realizations, and ĥ(n)
1,i and

Fig. 1. The Coherence of the measurement matrix for nT = 16 transmit
antennas.

Fig. 2. The Coherence of the measurement matrix for nT = 8 transmit
antennas.

ĥ
(n)
1,i represent the n-th channel realization and its estimate,

respectively. The multipath channel is modeled as a k-sparse
vector with k = 5 non-zero taps. The non-zero elements are
randomly positioned among L = 60 taps, and their values are
generated according to the i.i.d. complex Gaussian distribution
with zero mean and unit variance, i.e., CN (0, 1). Based on
the described channel model, 5000 channel realizations are
used in the simulations. The channel vectors are estimated by
Orthogonal Matching Pursuit (OMP) algorithm [18]. Fig. 3
presents the MSE performance for channel estimation. It is
observed that the pilot sequences designed by the proposed
method outperform the sequences obtained from the method
of [12].

In the second simulation, we compare the proposed pilot
design algorithm with the GA based method in [11]. To
make a fair comparison, we use exactly the same parameters
as in [11]. Therefore, we consider an OFDM system with
N = 512, NP = 24, nT = 4 and L = 50. By making
some straight forward changes in the proposed MIMO pilot
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Fig. 3. NMSE performance comparisons of channel estimation for different
pilot design schemes.

TABLE IV
COHERENCE OF THE MEASUREMENT MATRIX USING THE SHIFTING

MECHANISM.

Scheme Coherence value
Proposed Method 0.1763

GA based Method [11] 0.2186

design algorithm, we generate a core pilot sequence. Then,
to determine the pilot patterns of other transmitters we use
shifting mechanism proposed in [11]. The resulted coherence
values of different pilot design schemes are summarized in
Table IV. According to results given in Table IV, using the
proposed method we achieve exactly fair pilot sequences with
coherence of 0.1763, which is approximately 0.04 smaller
than the coherence achieved from the GA algorithm of [11].

VI. CONCLUSIONS

In this paper, the pilot design for sparse channel estimation
in MIMO-OFDM systems is investigated. Based on
minimizing the coherence of the measurement matrix,
we have proposed a greedy algorithm to design orthogonal
pilot sequences. To generate pilot sequences with lower
coherence values, we consider the joint optimization of pilot
patterns and powers. In order to preserve the fairness between
multiple pilot sequences, we have designed the algorithm
based on joint optimization of multiple pilot sequences and
minimizing the maximum coherence. Simulation results
verify that the proposed method outperforms the others in
terms of designing sensing matrices with smaller coherence
and estimating channels with lower NMSE.
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