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Abstract—Impulsive noise reduction is a special problem raised
in active noise control (ANC) systems. The filtered-x least mean
square (FxLMS) algorithm is a typical ANC method that has been
successfully applied in practical applications. Some variants such
as the logarithmic FxLMS and modified FxLMS algorithms have
been proposed to deal with the impulsive noise for ANC. However,
those methods require considerable computational loading in
real-time applications. In this paper, a modified median FxLMS
method is proposed for its low complexity to avoid the effect of
the impulsive noise. Simulation results show that the proposed
algorithm has better averaged noise reduction performance than
the conventional FxLMS and other order statistics based FxLMS
algorithms. In addition, the computational complexity stays the
minimum requirement through using only the ordering opera-
tion, which is very suitable for the real-time implementation.

Index Terms—Active noise control, Gaussian mixture impulsive
noise, FxLMS algorithm, Median.

I. INTRODUCTION
Noise cancellation methods can be generally divided into

two different approaches: one is passive cancellation and the
other is active cancellation. The passive cancellation approach
basically relies on the material property to prevent from the
noise. Due to practical limitations, the performance of the
passive cancellation methods may be subject to the material
engineering and physical design, usually also going with the
cost of higher price. Thanks to the improvement of modern
digital technology, the active cancellation approach has re-
ceived a lot of attention, usually together with a satisfying
performance and rich study in recent years.
In recent years, more and more audio applications have been

introduced because of the advance in technology development.
The requirement of active noise control (ANC) is widely found
in cars, mobile phones, fans, etc. ANC goes to process the
received sound waves in an earphone, for example, and the
secondary path tries to generate the signal which is close to
the noise appearing in the primary path. The noise is then
canceled through a loudspeaker embedded in the earphone.
ANC can improve the efficiency in noise control with lower
volume and cost [1][2]. The most widely used method in the
ANC approach is to apply the filtered-x least mean square
(FxLMS) algorithm [2]. The algorithm has the advantages of
robust performance [3], low computational complexity, and
ease of implementation.
When the ANC system encounters the impulsive noise,

the FxLMS algorithm will not reach a satisfying steady-
state performance that can be achieved in the Gaussian noise
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Fig. 1: Functional block of the conventional FxLMS algorithm.

condition. In [4], a new robust method called the filtered-x
least mean p-power algorithm (FxLMP) was proposed, but
its cost function J(n) = E{|e(n)|p} ≈ |e(n)|p, where p is
an integer number, indicates that the better results require
knowing the prior parameter p, which is not an easy task.
In [5], there is a simple variant of the FxLMS algorithms
for ANC to deal with the impulsive noise. The reference
signal x(n) will be clipped if its amplitude is larger than
a certain threshold. This algorithm can be more robust than
the conventional FxLMS algorithm, but it needs to find two
clipping parameters [c1, c2] for the upper and lower amplitude
levels, and moreover, the performance of this algorithm highly
depends on the clipping parameters c1 and c2. In [6] and [7],
Akhtar’s algorithm improved the performance better than the
Sun’s algorithm [5], where if the reference signal is over a
pre-determined threshold. In above mentioned algorithms, the
common problem using those methods is to find appropriate
threshold parameters, which may be not easy to be well used
with on-line operation in general ANC systems.
In this paper, the proposed modified median FxLMS al-

gorithm has lower computational complexity in O(L), where
L is the number of the filter taps in the secondary path.
Compared with the previously proposed FxLMS algorithms for
the problem caused by the impulsive noise, the new algorithm
does not need to find clipping thresholds. Numerical results
show that the proposed algorithm is more effective than other
FxLMS algorithms.

II. FXLMS ALGORITHM

Fig. 1 depicts the functional block of the conventional
single-channel feed-forward ANC structure using the FxLMS
algorithm [2]. The noise source x(n) is received from the
receiver microphone, the system response P (z) in the primary
path is modeled for the physical channel between the receiver
microphone and the error microphone, and the secondary-
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path response S(z) models the characteristics of the secondary
loudspeaker in the earphone. In addition, Ŝ(z) is the estimated
response of S(z) in the FxLMS algorithm, which can be ob-
tained by on-line or off-line methods in practical applications.
The objective of the adaptive filter W (z) is to minimize the
residual error signal e(n), which essentially establishes the
adaptation criterion in the FxLMS algorithm.
Assuming W (z) is an finite impulse response (FIR) filter

of the length of L taps, the corresponding output signal y(n)
is expressed as

y(n) = wT (n)x(n), (1)

where w(n) = [w0(n), w1(n), w2(n), · · · , wL−1(n)]
T

is the tap coefficient vector of W (z) and x(n) =
[x(n), x(n − 1), · · · , x(n− L+ 1)]

T is the L×1 input signal
vector. The residual error signal e(n) received by the error
microphone is given by

e(n) = d(n)− y
′
(n), (2)

and d(n) = p(n) ∗ x(n) is the primary disturbance noise and
y

′
(n) = s(n) ∗ y(n) is the secondary canceling signal, where

∗ denotes convolution, p(n) is the impulse response of the
primary path model P (z), and s(n) is the impulse response
of the secondary path model S(z).
It is known that the least mean square (LMS) algorithm

minimizes the mean square error (MSE) of the error signal to
adaptively find the optimum filter coefficients. The negative
gradient direction with a step size μ is established for the
LMS algorithm with the tap update equation, usually written
as

w(n+ 1) = w(n)− μ

2
∇J(n), (3)

where ∇ denotes taking gradient, which is used to minimize
the MSE of the cost function

J(n) = E[e2(n)] ≈ e2(n), (4)

where E[·] is the expectation operation. The FxLMS algorithm
is modified by giving

w(n+ 1) = w(n) + μ1e(n)x
′
(n), (5)

where μ1 is the step size for the FxLMS algorithm, x
′
(n) =

[x
′
(n), x

′
(n− 1), · · · , x′

(n− L+ 1)]
T
, and x

′
(n) = ŝ(n) ∗

x(n), where ŝ(n) is the impulse response of the estimated
secondary path model Ŝ(z).

III. MODIFIED MEDIAN FXLMS ALGORITHM

The performance of the ANC system will be seriously
degraded if the conventional FxLMS algorithm is performed in
the impulsive noise environment. The impulsive noise is a non-
Gaussian noise with a long-tailed distribution such that there
are possibly some noises of very large values, though with
low probability, appearing at the input of the FxLMS structure.
Some robust LMS algorithms have been studied to deal with
the impulsive noise, however, the median LMS algorithm[8][9]
is very appealing because of its low complexity. For the real-
time ANC applications, computational complexity is critical

and that is the main reason why we here propose a modified
median FxLMS algorithm to improve the ANC performance
in the impulsive noise.

A. Impulsive Noise
The FxLMS input x(n), in general, is assumed to be a Gaus-

sian noise xg(n). In this paper, for considering the interference
of the impulsive noise, the interference can be modeled as a
long-tailed distribution x�(n), say the exponential distribution.
For simplicity, x(n) can be modeled as

x(n) = (1− η)xg(n) + ηx�(n), (6)

where xg(n) and x�(n) are both independent and identically
distributed (i.i.d.) zero-mean Gaussian sequences with variance
σ2
g and σ2

� . η is an i.i.d. Bernoulli random sequence whose
value is either one or zero with occurrence probabilities
Pr(η = 1) = pr and Pr(η = 0) = 1−pr, where pr determines
the percentage of appearing a large value of outliers in the
mixture noise model. To characterize the impulsive noise, we
have σ2

g � σ2
� and pr can be near zero, say 0.001.

The overall noise variance in this sense becomes σ2
x = (1−

η)σ2
g + ησ2

� . If the occurrence probability of the impulsive
noise is very small, the variance of x(n) can be approximated
as σ2

g , which is the main reference value to set the threshold
value of the proposed algorithm in the next subsection.

B. Modified Median FxLMS Algorithm
Instead of (5), we consider a new update innovation for the

FxLMS filter as follows. Let

z(n) = [e(n)x
′
(n) e(n−1)x

′
(n−1) · · · e(n−L+1)x

′
(n−L+1)].

(7)
We define that the L ascending order statistics of the elements
of z(n) as

z(1)(n), z(2)(n), · · · , z(L)(n).

The median of z(n) is then defined as

ψL(n) = med{z(n)}L = z(L+1
2 )(n), (8)

where we suppose L is an odd number. The median FxLMS
replaces the update innovation e(n)x

′
(n) in (5) with ΨL(n),

where ΨL(n) = [ψL(n) ψL(n−1) · · ·ψL(n−L+1)]T , which
can be written as

w(n+ 1) = w(n) + μ2ΨL(n), (9)

where μ2 is the step size. It is worthy of note, the median
FxLMS changes the convergence behavior on which the
FxLMS algorithm is based. In sequence, the median FxLMS
may have worse performance in the Gaussian noise. The
incorporation of median also leads to a little computational
overhead in O(N) operations. In spite of above weakness, the
median FxLMS has better resistance to the impulsive noise.
In practical applications, the interference of the impulsive

noise usually has quite low probability. It is known that
the median FxLMS may lead to worse performance than
the standard FxLMS when the noise is Gaussian. Then, we
develop a modified median FxLMS structure by introducing an
impulse detection block in front of implementing the median.
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Fig. 2: Frequency response of the primary path model P (z).

Suppose s(n) is normalized, the impulsive noise is determined
by the following rule:

max{|x′
(n)|}

H1

≷
H2

γ, (10)

where γ is a pre-determined threshold, and H1 indicates
implementing (9) while H2 implementing (5). One important
concern in this algorithm is the setup of γ. As we have
mentioned in above subsection, the impulsive interference
actually has low occurrence probability in most of practical
applications such that, by the three-sigma rule of thumb, nearly
all Gaussian noise has the value below 3σg Therefore, we
choose γ = 3σg in this paper.

IV. SIMULATION RESULTS

In this section, the performance of the modified median
FxLMS algorithm is compared with that of the conventional
FxLMS and other order statistics based FxLMS algorithms
such as the mean FxLMS and the trimmed-mean FxLMS
algorithms. The trimmed mean [10] is defined as calculating
the mean after discarding given parts of the samples of
values at high and low end. The tap lengths of the primary
and secondary path models, P (z) and S(z), are 65 and 35,
respectively. The frequency responses of the two models are
plotted in Figs. 2 and 3. The tap length of the adaptive filter
W (z) is chosen as L = 35. Hence, the median in the proposed
algorithm is chosen from the nearby 35 samples and the
number of samples to calculate the mean in the trimmed-mean
FxLMS algorithm are 11. In this paper, we suppose that the
estimated secondary path model Ŝ(z) exactly equals to S(z).
In this paper, the impulsive noise is simulated with the

mixture Gaussian noise model written by

x(n) = (1− η)N(0, 1) + ηN(0, σ2), (11)

where N(α, β2) denotes the Gaussian distribution with mean
α and variance β2, η is determined from the uniform distribu-
tion U(0, 1), and σ2 will be set in the following experimental
cases. In addition, if pr is set as 0.001, that is, in average, one

Fig. 3: Frequency response of the secondary path model S(z).

sample is considered as the impulsive interference in every
1000 input samples.
We compare the performance in terms of the mentioned

3σ decision rule for γ, that is, γ = 3 here, to analyze the
performance metric of averaged noise reduction (ANR) [11].
Define ANR in decibel (dB) as

ANR(n)[dB] = 20log10

(
Ae(n)

Ad(n)

)
(12)

where

Ae(n) = λAe(n− 1) + (1− λ)|e(n)| (13)
Ad(n) = λAd(n− 1) + (1− λ)|d(n)| (14)

where | · | represents absolute value, λ is a forgetting factor
and is set as 0.999.

A. Experimental Case 1
In Fig. 4, the variance of the signal x(n) is set as σ2 = 1000

and pr = 0.001, the step sizes are the same μ1 = 10−3 and
μ2 = 10−3 for all of the compared algorithms. The results of
ANR are shown in Fig. 5. The proposed algorithm has better
ANR performance than other three algorithms though the
trimmed-mean FxLMS shows a little better results in parts of
iterations. This indicates that median can effectively suppress
the influence of the impulsive interference.

B. Experimental Case 2
In Fig. 6, the variance of the signal x(n) is set as σ2 = 1000

and pr = 0.003, step sizes are μ1 = 10−3 and μ2 = 10−3

for all algorithms. The results of ANR are shown in Fig. 7. In
this case, the occurrence probability of the impulsive noise is
apparently more than that in case 1. The conventional FxLMS,
the mean FxLMS, and even the trimmed-mean FxLMS algo-
rithms obviously fail to give correct function. The proposed
algorithm still maintains a better ANR performance.

V. CONCLUSION

The proposed modified median FxLMS has sufficient ro-
bustness to deal with the influence of the impulsive noise.
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Fig. 4: Input x(n) simulated by the Gaussian mixture impul-
sive noise with pr = 0.001 and σ2 = 1000 in Experiment case
1.
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Fig. 5: ANR curves of the compared FxLMS algorithms in
Experiment case 1.

According to the simulation results, even when the input signal
has more intensively impulsive noises, the proposed algorithm
still can effectively suppress the impulsive noise with a good
ANR performance. We can see that the proposed method is
robust to the impulsive noise.
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