
Bottleneck Features from SNR-Adaptive Denoising
Deep Classifier for Speaker Identification

Zhili TAN and Man-Wai MAK
Center for Signal Processing, Dept. of Electronic and Information Engineering

The Hong Kong Polytechnic University, Hong Kong SAR
E-mail: enmwmak@polyu.edu.hk

Abstract—In this paper, we explore the potential of using
deep learning for extracting speaker-dependent features for noise
robust speaker identification. More specifically, an SNR-adaptive
denoising classifier is constructed by stacking two layers of
restricted Boltzmann machines (RBMs) on top of a denoising
deep autoencoder, where the top-RBM layer is connected to a
soft-max output layer that outputs the posterior probabilities
of speakers and the top-RBM layer outputs speaker-dependent
bottleneck features. Both the deep autoencoder and RBMs are
trained by contrastive divergence, followed by backpropagation
fine-tuning. The autoencoder aims to reconstruct the clean
spectra of a noisy test utterance using the spectra of the
noisy test utterance and its SNR as input. With this denoising
capability, the output from the bottleneck layer of the classifier
can be considered as a low-dimension representation of denoised
utterances. These frame-based bottleneck features are than used
to train an iVector extractor and a PLDA model for speaker
identification. Experimental results based on a noisy YOHO
corpus show that the bottleneck features slightly outperform the
conventional MFCC under low SNR conditions and that fusion
of the two features lead to further performance gain, suggesting
that the two features are complementary with each other.

Index Terms—Deep learning; Bottleneck features, denoising
autoencoder, speaker identification, deep belief networks

I. INTRODUCTION

In recent years, deep learning has achieved a great success
in many areas, including speech recognition [1], computer
vision [2], speech synthesis [3], [4] and music recognition
[5]. In many of these studies, deep neural networks (DNN)
and deep belief networks (DBN) [6] are used as classifiers.
This is achieved by adding a softmax layer on top of the
hidden layers of restricted Boltzmann machines (RBM). Deep
learning is powerful in that the resulting deep networks have
strong ability to disentangle the variation in the input patterns,
and therefore greatly improve the performance in many clas-
sification problems. The posterior probabilities generated by
the softmax layer can replace the ones generated by other
generative models, e.g. Gaussian mixture models (GMM)
in speaker recognition [7], hidden Markov models (HMM)
in large vocabulary continuous speech recognition (LVCSR)
[1], and the posterior of senones in i-vector based speaker
verification [8].

This paper explores the use of DNNs for extracting speaker-
dependent features for speaker recognition. To this end, we
stacked a denoising deep autoencoder [9], [10], two layers
of RBMs and a softmax layer to form a DNN classifier that

produces posterior probabilities of speaker identities as output.
However, instead of using the classifier directly for speaker
identification, we used the RBM just below the softmax output
layer of the DNN as the bottleneck layer for feature extraction.
More precisely, bottleneck features are extracted from the
RBM’s outputs before sigmoid nonlinearity. The bottleneck
features, which provide a low-dimensional representation of
the input patterns [11], are used for training an iVector-PLDA
speaker identification system. The advantage of using the DNN
as feature extractor rather than using it directly as speaker
identifier is that the number of test speakers will not be limited
by the number of nodes in the softmax layer.

We used noisy speech as the input and clean speech as the
target output to train the denoising autoencoder [10], which
is pre-trained by using contrastive divergence [12] followed
by backpropagation fine-tuning. Then, two layers of RBMs
are trained using the outputs of the denoising autoencoder as
input. Finally, a softmax layer with number of nodes equal
to the number of training speakers is put on top of the last
(bottleneck) layer of RBM and backpropagation fine-tuning is
further applied to minimize the cross-entropy training error.
Therefore, the first several layers in the DNN classifier help
to make the whole neural network more noise robust, while
the top layers extract the speaker-dependent information from
the denoisd spectra. We demonstrated that at 0dB SNR, the
bottleneck features are slightly more robust than the standard
mel frequency cepstral coefficient (MFCC) [13].

II. SNR-ADAPTIVE DENOISING DEEP AUTOENCODER

A. Input Preprocessing

To train the denoising autoencoder, it is necessary to pre-
process the input speech. On one hand, cepstral features have
shown promise in previous research; on the other hand, it is
intuitive to apply raw features as input to realize the potential
of autoencoders in modelling speech signals. In particular, the
log-spectra, the log mel-scale triangular filterbank output and
even MFCC are candidate inputs.

For the log-spectra, we performed 512-point fast Fourier
transform on 8 kHz speech data, followed by taking logarithm.
Due to the symmetry property of Fourier transform for real
numbers, only the first 256 components were used in subse-
quent steps.

For the log mel-scale triangular filterbank output, 20 tri-
angular filterbanks from 300Hz to 3700Hz were used, and

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1035 APSIPA ASC 2015



therefore the 256-dimensional spectra were reduced to 20
dimensions. After applying discrete cosine transform (DCT),
we obtained the MFCCs.

For each of the input types, we packed it with another input
node that represents the SNR to form the input patterns of the
SNR-adaptive denosing autoencoder. The structure of hidden
layers is identical for all input types. It has been shown [14]
that it is beneficial to apply Z-norm to the input vectors. In our
experiments, the SNR and the input features are normalized
independently, i.e. the mean and standard deviation of the SNR
and the bottleneck features were estimated separately.

In addition to the preprocess techniques above, we can
also use a contextual window covering several frames as the
input to the DNN. For example, a sliding window covering
7 frames of mel filterbank outputs consists of 20 × 7 = 140
nodes. Together with the SNR node, there are 141 nodes in
the input layer. Fig. 1 shows the architecture of the denoising
autoencoder with the SNR node omitted.

. . .

. . .. . .

. . .

. . .. . .

. . .

Input Layer 
(Gaussian)

Hidden Layer 
(Bernoulli)

Bottleneck Layer 
(Linear)

Hidden Layer 
(Bernoulli)

Output Layer 
(Linear)

5 frames

1 frames

Sliding Window

. . .
Bottleneck Features

Noisy 
Reverberant 

Speech

Reconstructed 
speech

Fig. 1. Denoising deep autoencoder.

B. RBM Pre-training

Backpropagation (BP) [15] is commonly used for training
DNNs. However, BP is a gradient descent algorithm, which
could be easily trapped in local minima, especially when the
neural network has a deep structure (having many hidden
layers). This is because the gradients in the bottom layers
are too small. In this case, we can consider the DNN as
comprising a number of stacked RBMs, which is trained
layer-by-layer via the contrastive divergence algorithm. It is

commonly believed that this pre-training step can bring the
DNN close to the global optimal solution, which helps the
backpropagation algorithm to convergence to a better solution.

RBM is an energy-based model in which nodes within
the same layer do not have interaction. For denoising deep
autoencoders, the structure is symmetric with respect to the
middle layer. Thus we only need to train the first half of the
network, i.e., from the input to the middle layer, and then
copy the parameters to the upper half of the network before
the backpropagation fine-tuning (see Fig. 2).

The nodes of RBMs in the middle layers of the autoencoder
follows a Bernoulli distribution, which means that both the
visible and hidden units in the middle layers are binary.
However, the nodes in the input layer should follow a Gaussian
distribution, because log-spectra and MFCC follow Gaussian
distributions.

In the Bernoulli-Bernoulli RBM, the activation function is
the sigmoid function:

s(z) =
1

1 + e−z
(1)

and the energy function is defined as:

E(v,h) = −
∑
i∈vis

aivi −
∑
j∈hid

bjhj −
∑
i,j

vihjwij (2)

where vi and hj are the binary states of visible unit i and
hidden unit j respectively, ai and bj are their biases, and wij

is the weight between the i-th visible unit and the j-th hidden
unit. By using contrastive divergence [12], we maximize the
probability that the network assigns to a visible vector, v:

p(v) =
1

Z

∑
h

e−E(v,h). (3)

For Gaussian-Bernoulli cases, the activation function in the
visible layer is linear, and the energy function is defined by:

E(v,h) =
∑
i∈vis

(vi − ai)2

2σ2
i

−
∑
j∈hid

bjhj −
∑
i,j

vi
σi
hjwij (4)

where σi is the standard deviation of the Gaussian noise for
visible unit i.

C. Backpropagation Fine-tuning

After RBM pre-training, we can stack the RBMs, copy the
parameters in the lower half of the DBN to the upper half,
and then fine-tune them by using backpropagation, as Fig. 2
illustrates.

In backpropagation training, we presented a mini-batch of
input patterns and update the network parameters to bring the
actual outputs closer to the target values. To equip our autoen-
coder with denoising ability, we used noisy speech as input
and their corresponding clean counterparts as target outputs,
while the error function is the squared loss, L(z, z̃) = ‖z−z̃‖22.
However, we kept the SNR component in the output the same
as the input in the experiments since we only focused on the
speech denoising capability of this autoencoder.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1036 APSIPA ASC 2015



RBM w1

Hidden Layer 1 

RBM w2
Hidden Layer 1 

Hidden Layer 2 

Noisy Input 

Noisy Input 

Hidden Layer 1 

Hidden Layer 2 

Hidden Layer 3 

Clean Target Output 

w1 +ε1

w2 +ε2

w2
T +ε3

w1
T +ε4

Fig. 2. Construction of a denoising autoencoder by training two RBMs layer-
by-layer and then stacking them symmetrically, followed by backpropagation
fine-tuning.

Backpropagation [15] uses the chain rule to iteratively
compute the error gradient of each layer, collects the gradients
from top to bottom layers, and updates the weights layer by
layer. In our experiments, the first three hidden layers are all
Bernoulli layers, and therefore they have a sigmoid activation
function. However, the output layer of the autoencoder, which
aims to reconstruct the input, uses a linear activation function.
The autoencoder is a key component of the DNN classifier, as
Fig.3 shows.

III. SNR-ADAPTIVE DENOISING DEEP CLASSIFIER

Because of the denoising autoencoder, the DNN learns how
to extract clean information from the noisy input patterns.
However, our goal is to enable the DNN to extract speaker-
dependent features. To this end, we construct a speaker clas-
sifier by putting two more layers of RBMs on top of the
autoencoder as shown in Fig. 3. Finally, a softmax layer with
the number of nodes equals to the number of training speakers
is added to the network. Backpropagation is then applied to
fine-tune the DNN by minimising the cross entropy error.
Specifically, we assume that we have N training speakers
whose spectral feature vectors and speaker labels are given
by

X = {xi,j ∈ <D; i = 1, . . . , N ; j = 1, . . . ,Mi}
C = {ci,j ∈ <N ; i = 1, . . . , N ; j = 1, . . . ,Mi}

(5)

where ci,j’s are one-of-N vectors indicating to which speaker
the spectral vector xi,j belongs and Mi is the number of
vectors from speaker i. Then, we minimize the cross-entropy
error:

E(X , C) = −
N∑
i=1

Mi∑
j=1

N∑
k=1

ci,j,k log(f(xi,j)k)

= −
N∑
i=1

Mi∑
j=1

N∑
k=1

ci,j,k log(yi,j,k)

(6)

where k indexes to the output nodes of the DNN, f(·) repre-
sents the mapping function of the DNN, and yi,j,k represents
the output of the k-th output node subject to the input vector
xi,j .

After backpropagation fine-tuning, bottleneck features can
be extracted from the output (before sigmoid nonlinearity) of
the BN layer in a frame-by-frame basis as shown in Fig. 3.

The first RBM (comprising Hidden Layer 4 and Hidden
Layer 5 in Fig. 3) is Gaussian-Bernoulli due to the character-
istic of the autoencoder’s reconstruction layer. The top-most
RBM (comprising Hidden Layer 5 and BN Layer in Fig. 3) is
Bernoulli-Bernoulli. Because what we require is a classifier,
the last layer (Speaker ID in Fig. 3) is a softmax layer, and
therefore no RBM pre-training for this layer was applied. Its
size is equal to the number of classes, which in our case is
the number of training speakers here. We used the 1-of-N
coding scheme for the output nodes. Specifically, for each
input vector, the desired output of the nodes in the softmax
layer are all zeros, excepting the one that indicates the speaker
to which the input vector belongs. After BP training, given a
noisy input spectral vector x, the k-th node of the softmax
layer is computed as

yk = f(x) =
ehk∑N

k′=1 e
h′
k

(7)

where f(x) represents the whole DNN mapping function and
hk is the output of the BN layer, which implicitly depends on
x through the other hidden layers and the autoencoder.

Note that there are two layers in the DNN that do not use
the sigmoid function as the activation function. The first one
is the reconstruction layer in the autoencoder, which uses the
linear function instead; the second one is for classification,
which uses the softmax function.

Fig. 4 shows the spectrogram and histograms of log-spectra
of the clean, 0dB noisy, and denoised speech, respectively.
The figure shows that the noise seriously distorted the spectral
patterns of the clean speech. However, the denoising deep
autoencoder performs very well in restoring the patterns, as
demonstrated in the third panel of the figure. The histogram on
the right of Fig. 4 shows that after denoising, the distribution
of log-spectra is non-Gaussian. However, after applying BP
to fine tune the whole DNN, the output of the autoencoder
follows a Gaussian-like distribution.

A. iVector-PLDA Speaker Identification

The iVector [16] and probabilistic LDA (PLDA) [17] are
commonly used for speaker verification. The idea is to repre-
sent the speaker and channel characteristics of an utterance
by a low-dimensional vector called the iVector, which is
essentially the posterior mean of the latent factors of a factor
analysis model. Given an iVector, the channel variability is
removed by marginalizing out the channel factors in a PLDA
model (which is a supervised factor analysis model) during
verification. This iVector-PLDA framework was originally de-
signed for speaker verification, which is a binary classification
problem.



RBM w3

Hidden Layer 5 

RBM w4
Hidden Layer 5 

BN Layer 

Denoised Speech 

Noisy Speech 

Hidden Layer 1 

Hidden Layer 2 

Hidden Layer 3 

Denoised Speech 

w1 +ε1

w2 +ε2

w2
T +ε3

w1
T +ε4

Noisy Speech 

Hidden Layer 1 

Hidden Layer 2 

Hidden Layer 3 

Hidden Layer 4 

w1 +ε1 '

w2 +ε2 '

w2
T +ε3 '

w1
T +ε4 '

Hidden Layer 5 

BN Layer 

w3 +ε5

w4 +ε6

Speaker ID 

w5

Denoising	
  
	
  Deep	
  	
  

Autoencoder	
  

Denoising	
  
	
  Deep	
  

	
  Classifier	
  

Fig. 3. Constructing the DNN classifier and bottleneck (BN) feature extractor by stacking two RBM layers (Hidden Layer 5 and BN Layer) and a softmax
layer (Speaker ID) on top of the autoencoder (from Noisy Speech to Hidden Layer 4), followed by backprogagation fine-tuning. Note that after fine-tuning,
only the features extracted from the BN layer will be used for iVector-PLDA speaker identification.

In this work, we applied this framework to speaker iden-
tification, which is a multi-class problem. First, we used the
utterances of all training speakers to train an iVector extractor.
Then, the iVectors of each registered speaker in the speaker
identification system were computed, one for each enrollment
utterance. Also, the iVectors of all training speakers (who
can be different from the registered speakers) were extracted.
These training iVectors together with their speaker labels were
used for training a PLDA model [18], [19].

During identification, given a test utterance, an iVector
is computed. Then, the test iVector is scored against the
iVectors of each of the registered speakers using the PLDA
scoring function [20], [19] and the scores were averaged. For
a system comprising R registered speakers, these steps give
R averaged scores for each test utterance, and the speaker
identity corresponds to the maximum averaged score. More
precisely, denote wi,j as the iVector of the j-th session of
the i-th registered speaker in the system. Then, given a test
utterance with iVector wt, the speaker ID of the test utterance
is

ID(wt) = arg
R

max
i=1

1

Ni

Ni∑
j=1

SPLDA(wi,j ,wt), (8)

where Ni is the number of enrollment iVectors of speaker i.

IV. EXPERIMENTS

A. Experimental Setup
We performed speaker identification experiments based on

138 speakers in the YOHO corpus [21].1 We used the enroll-
ment sessions, which consist of 96 utterances per speaker, as

1To minimize computation time in this pilot study, we did not use the NIST
evaluation corpora. This will be our future work.

training data. We used the verify sessions of the corpus as
testing data, in which there are 40 utterances per speaker.2

Totally, there are 13,248 utterances for training and 5516
utterances for testing. Each utterance is about 3 to 4 seconds
long, sampled at 8kHz, and comprises three two-digit numbers
in English, e.g. 26-81-57. We used the FaNT tool to add babble
noise to the original YOHO utterances at 15dB, 6dB, and 0dB.
Thus, there are totally 13, 248 × 4 = 52, 992 utterances for
training the DNN classifier. We used an energy-based voice
activity detector [22], [23] to extract the speech regions of
each utterance.

To train the autoencoder part of the classifier, each clean
utterance is paired with itself and its noisy counterparts, which
amounts to 13,248 clean–clean training pairs and 13, 248×3 =
39, 744 clean–noisy training pairs. The autoencoder comprises
three hidden layers, whose weights were trained by using both
noisy and clean speech data as input and only clean speech
data as the target output. Each of the hidden layers contains
256 nodes. Our aim is to enable it to perform speech denoising
in the spectral domain. To achieve this, we split the training
data into mini-batches comprising 100 consecutive spectra and
applied 30 epochs of RBM pre-training, and then used mini-
batches comprising 1,000 consecutive spectra and applied 100
epochs of backpropagation fine-tuning using gradient descent
with a learning rate of 0.1 and momentum of 0.6.

By using the denoised spectra from the autoencoder, we
trained another two RBMs with 256 and 60 hidden nodes, re-
spectively. Because the number of training speakers is 138, the
DNN has 138 output nodes, i.e., N = 138 in Eq. 5. However,

2Except for Speaker 277 whose only have 36 valid utterances in the verify
sessions.



Clean log−spec.

20 40 60 80 100

50

100

150

200

250

Noisy log−spec.

20 40 60 80 100

50

100

150

200

250

Denoised log−spec. from autoencoder

20 40 60 80 100

50

100

150

200

250

Denoised log−spec. after classifier fine−tuning

20 40 60 80 100

50

100

150

200

250

−6 −4 −2 0 2 4
0

500

1000

1500
Histogram of clean log−spec.

−4 −2 0 2 4
0

500

1000

1500

2000
Histogram of noisy log−spec.

−4 −2 0 2 4
0

500

1000

1500

2000
Hist. of denoised log−spec. from autoencoder

−4 −2 0 2 4
0

500

1000

1500
Hist. of denoised log−spec. after classifier fine−tuning

Fig. 4. The spectrograms and histograms of log-spectra of clean, 0dB noisy,
and denoised speech.

because the cross-entropy error has a larger fluctuation when
fine-tuning the whole DNN, we reduced the learning rate to
0.0003.

Finally, we obtain a denoising deep classifier with D-256-
256-256-D-256-60-138 nodes in the respective layer starting
from input to output, where D represents the dimension of the
spectral vectors.

In the experiments, the 60-dimensional bottleneck features
extracted from the second-top layer in the classifier before
sigmoid non-linearity were compared with 60-dimensional
MFCC baseline features. For the former, the frame-based BN
features were whitened using PCA whitening. For the latter,
we computed 19 MFCCs and the log-energy for each frame.
Then we packed the MFCCs and log-energy together with their
first and second order derivatives to form a 60-dimensional
acoustic vector for each frame.

In the back-end system, we used the state-of-the-art iVector
[16] and probabilistic LDA (PLDA) [18]. To train an iVector
extractor, we used all of the 52992 training utterances from
the clean and the three SNR conditions to train a universal
background model (UBM) with 256 Gaussians and a total
variability matrix with 400 factors. For each utterance, an
iVector was extracted from the iVector extractor [16] so that
the speaker characteristics of the entire utterance is repre-
sented by this 400-dimensional vector. Given 52992 training
utterances, we have 52992 iVectors. Then they were used
for training an SNR-independent PLDA model with 138

latent factors by grouping the iVectors of the same speaker
together. Because there are 138 training speakers, we have
138 groups of speaker-dependent iVectors and each group
comprises 96× 4 = 384 iVectors.

B. Results of Denoising BN Features

We used three types of input for the DNN: 1 frame of
256-dimensional log-spectra (Log-spec), a contextual window
covering 7 frames of 20-dimensional log mel-scale triangular
filterbank output (Log-mel), and 5 frames of 60-dimensional
MFCC (MFC) to generate the BN features. These 3 types
of inputs result in Log-spec BN, Log-mel BN and MFC BN
features, respectively.

Table I shows the accuracy of speaker identification, which
is a bit disappointing in that only the Log-mel BN features with
the Log-mel input are comparable with the standard MFCC
under high SNR conditions and outperform it under low SNR
conditions. Besides, it is surprising that the MFC BN features
using 5 frames of MFCC as input always perform worse than
the Log-mel ones and the standard MFCC. This may be due
to the smearing effect of the denoising autoencoder. Further
investigations are warranted to investigate the reasons behind
the poor performance.

The Log-spec BN feature performs slightly poorer than
the MFC BN feature under both clean and noisy conditions.
We suspect that the poor performance is due to the lack of
contextual frames (in Log-spec, the size of contextual window
is 1) in the input. However, we found that increasing the
contextual window size to 5 leads to even poorer performance.
This could be caused by the high-dimensionality of the log-
spectral vectors, which forbids us to use multiple frames in
the contextual window.

TABLE I
COMPARISON BETWEEN MFCC AND BN FEATURES

Feature
SNR of Test Utterances

Clean 15dB 6dB 0dB

MFCC 98.31% 95.61% 90.08% 65.65%
Log-spec BN 95.56% 93.04% 83.39% 62.98%
Log-mel BN 98.21% 96.77% 91.48% 75.29%

MFC BN 97.44% 94.24% 86.84% 63.61%

C. PLDA Score Combination

Because the BN features, especially the Log-mel one, per-
form well under low SNR conditions, we can fuse the MFCC
and the BN features to improve the performance of speaker
identification at the PLDA score level:

Sfused = α× Smfcc + (1− α)Sbn, (9)

where α is the fusion weight and S denotes the PLDA scores.
When α = 1, no fusion is performed and only MFCC features
were used. On the other hand, when α = 0 only BN features
were considered. We varied the value of α with a step size
of 0.01. As Table II illustrates, the Log-mel BN features with
score fusion increase the accuracy significantly.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1039 APSIPA ASC 2015

lenovo
Cross-Out



TABLE II
FUSION OF THE PLDA SCORES BASED ON MFCC AND BN FEATURES

Feature
Fusion

Weight α
(Eq. 9)

SNR of Test Utterances

Clean 15dB 6dB 0dB

MFCC 1.00 98.31% 95.61% 90.08% 65.65%
Log-spec

BN
0.00 95.56% 93.04% 83.39% 62.98%
0.57 99.15% 98.11% 94.13% 79.89%

Log-mel
BN

0.00 98.21% 96.77% 91.48% 75.29%
0.51 99.56% 98.55% 95.87% 84.34%

MFC BN
0.00 97.44% 94.24% 86.84% 63.61%
0.56 98.89% 96.72% 93.31% 76.53%

V. CONCLUSIONS AND FUTURE WORK

This paper shows that Log-mel BN features from denoising
deep classifier are noise robust under low SNR environments.
The noise robustness is mainly attributed to the autoencoder’s
denoising ability, which facilitates the upper hidden layers of
the DNN to extract more noise robust bottleneck features. The
BN features are comparable with the standard MFCC, and
they are complementary to each other, leading to significant
performance gain after fusing the MFCC- and BN-based
PLDA scores.

In the experiment, we did not use a contextual window for
the 256-dimensional Log-spec input, since the input dimension
is very high when compared with other types of input. Even
without contextual window, the performance of the Log-spec
BN features is still comparable with that of the Log-mel
ones, but the performance under low SNR conditions drops
significantly.

The poor performance of the MFC BN features is surprising.
The reason is possibly that the distribution of the MFCC
is more complex than a single Gaussian (otherwise we do
not need GMM for speaker recognition), and therefore the
Gaussian-Bernoulli RBM cannot model the input patterns
properly. Some other preprocessing techniques deserve a try
for the MFCC input, e.g. the feature warping [24].

Our preliminary experiment is done on the YOHO corpus,
whose speech contents do not have much phonetic variation.
In future work, experiments on NIST datasets are necessary.

ACKNOWLEDGMENT

This work was in part supported by The RGC of Hong Kong
SAR, Grant No. PolyU 152117/14E.

REFERENCES

[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol.
20, no. 1, pp. 30–42, 2012.

[2] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105.

[3] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech
synthesis using deep neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 7962–7966.

[4] Z.H. Ling, S.Y. Kang, H. Zen, A. Senior, M. Schuster, X.J. Qian, H.M.
Meng, and L. Deng, “Deep learning for acoustic modeling in parametric
speech generation: A systematic review of existing techniques and future
trends,” Signal Processing Magazine, IEEE, vol. 32, no. 3, pp. 35–52,
May 2015.

[5] P. Hamel and D. Eck, “Learning features from music audio with deep
belief networks.,” in ISMIR. Utrecht, The Netherlands, 2010, pp. 339–
344.

[6] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[7] W.M. Campbell, “Using deep belief networks for vector-based speaker
recognition,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[8] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for
speaker recognition using a phonetically-aware deep neural network,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 1695–1699.

[9] G. Hinton and R.R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[10] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” The Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[11] S. Yaman, J. Pelecanos, and R. Sarikaya, “Bottleneck features for
speaker recognition,” in Odyssey, 2012, vol. 12, pp. 105–108.

[12] G. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[13] M. Sahidullah and G. Saha, “Design, analysis and experimental eval-
uation of block based transformation in mfcc computation for speaker
recognition,” Speech Communication, vol. 54, no. 4, pp. 543–565, 2012.

[14] E. Turajlic and O. Bozanovic, “Neural network based speaker verifi-
cation for security systems,” in Telecommunications Forum (TELFOR),
2012 20th, 2012, pp. 740–743.

[15] D.E. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by back-propagating errors,” Cognitive Modeling, vol. 5, 1988.

[16] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, no. 4, pp. 788–798, 2011.

[17] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in
Proc. of Odyssey: Speaker and Language Recognition Workshop, Brno,
Czech Republic, June 2010.

[18] S. Prince and J.H. Elder, “Probabilistic linear discriminant analysis for
inferences about identity,” in Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on, 2007, pp. 1–8.

[19] N. Li and M.W. Mak, “SNR-invariant PLDA modeling in nonparametric
subspace for robust speaker verification,” Audio, Speech, and Language
Processing, IEEE/ACM Transactions on, vol. 23, no. 10, pp. 1648–1659,
Oct 2015.

[20] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in Interspeech’2011,
2011, pp. 249–252.

[21] J. Campbell, “Testing with the yoho cd-rom voice verification corpus,”
in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995
International Conference on. IEEE, 1995, vol. 1, pp. 341–344.

[22] M. W. Mak and H. B. Yu, “A study of voice activity detection techniques
for NIST speaker recognition evaluations,” Computer, Speech and
Language, vol. 28, no. 1, pp. 295–313, Jan 2013.

[23] H.B. Yu and M.W. Mak, “Comparison of voice activity detectors
for interview speech in NIST speaker recognition evaluation,” in
Interspeech, 2011, pp. 2353–2356.

[24] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker ver-
ification,” in A Speaker Odyssey - The Speaker Recognition Workshop,
2001, pp. 213–218.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1040 APSIPA ASC 2015




