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Abstract—Local ternary pattern (LTP) is a noise-robust version
of local binary pattern (LBP). They are both encoding for the
differences between the intensity of the center pixel and its
neighborhoods. In this paper, based on Webers law we propose
two new local descriptors, named Weber binary pattern (WBP)
and Weber ternary pattern (WTP), which utilize binary and
ternary encoding separately for the evaluation of the relative local
gray-scale difference. While sharing the merits of computational
simplicity and noise tolerance embedded in LBP and LTP, WBP
and WTP are more illumination-robust and can be regarded
as adaptive versions of LBP and LTP. Experimental results in
Extended Yale-B face database demonstrate the effectiveness
of the proposed WBP and WTP in illumination-robust face
recognition.

I. INTRODUCTION

As one of the most successful biometric technologies, face
recognition has recently attracted a lot of researchers and has
a range of applications in the field of entertainment, informa-
tion security, smart cards, law enforcement and surveillance
[1]. Though tremendous advance has been achieved during
the last decades, illumination-robust face recognition is still
challenging in automatic face recognition [2] [3].

In recent years, a number of face recognition approaches
with illumination invariant have been proposed. They could be
divided into four main categories. The first category handles
the illumination normalization problem using conventional
image processing methods such as Histogram Equalization
(HE) [4], Gamma Intensity Correction (GIC) [5], Logarithm
Transform (LT) [6], etc. The second category attempts to
learn a face model under different illumination variations
from the illumination samples. Batur and Hayes [7] proposed
a segmented linear subspace model for illumination robust
face recognition and Georghiades et al. [8] made use of
Illumination Cone. This category requires a lot of training
images and is not practical for applications. The third cate-
gory attempts to remove the illumination component such as
such as Homomorphic filtering approach [9], discrete cosine
transform in logarithm domain [10], wavelet transform in the
frequency domain [11], etc. The forth category tries to find an
representation which is insensitive to illumination variation.
Gradientface (GF)[12], single scale retinex approach (SSR)
[13] and self-quotient image (SQI) [14] are representatives of
this category.
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Except for the above methods dedicated to handling illumi-
nation variation, some texture classification approaches are ap-
plied to illumination-robust face recognition as well. Relying
on its tolerance regarding monotonic illumination variations
and computational simplicity, Local Binary Pattern (LBP) [15]
has been applied in face recognition widely. However, LBP is
sensitive to noise, particularly in near-uniform image region.
To improve the robustness to noise, Tan et al. introduced local
ternary pattern (LTP) in [16], which utilized ternary encoding
instead of binary encoding in LBP. On the one hand, both
LBP and LTP encode the differences between the intensity of
the center pixel and its neighborhoods, while the perceptual
increment varies with the background intensity, i.e. the Webers
law, which has been employed by Weber local descriptor
(WLD) [17] and Weber-face [18]. On the other hand, the
choice of the threshold in LBP, which is O and that of LTP,
which is a pre-set fixed value, is very important and the best
one should vary depending on the region of the face image.

Based on the above two considerations and our previous
work [18][19], Weber binary pattern(WBP) and Weber ternary
pattern (WTP) are proposed and they have the following
satisfactory characteristics: 1) The WBP and WTP employ
the relative intensity difference of the center pixel and its
neighborhood, which conforms to the human visual system
better; 2) The WBP and WTP are insensitive to illumination
variations and noises, and share computational simplicity with
LBP and LTP; 3) The WBP and WTP can be regarded as
adaptive versions of LBP and LTP.

II. WEBER BINARY PATTERN AND WEBER TERNARY
PATTERN

A. Weber Binary Pattern (WBP)

Weber’s law hypothesizes that the ratio between the in-
tensity increment (AJ) and the background intensity (/) is
a constant as:

I t (1)
T = const.

The WBP operator encodes a local neighborhood around
each pixel. It thresholds the relative difference between the
intensity of the neighborhood and the center pixel with bi-
nary encoding, in which the relative differences above 7 are
quantized to 1, ones below 7 to 0. We define s,(I;, I, 7) as
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Fig. 1. An example of the WBP computation schema on a 3 x 3 neighborhood
with 7 = 0.2.

a 2-value relative difference indicator in (2).

1, if i L >
Sb(Ii7-[67T) = { O if I,; 1. <T (2)

where I; and I, are the intensities of the ¢th neighborhood
pixel and the center pixel with the coordinates (x., y.), and 7
is the threshold. Fig. 1 presents an simple example of the WBP
computation schema on a 3 x 3 neighborhood with 7 = 0.2.

B. Weber Ternary Pattern (WTP)

Different from WBP, WTP utilizes ternary encoding for the
evaluation of the relative local gray-scale difference and we
define s;(I;, I.,7) as a 3-value relative difference indicator in

Q).

1, if e >r7
se(I, 1, 7) = 0, if |Le|<r (3)
-1, if Lde< -7

Next, the WTP code for the center pixel in (z., y.) can be
formulated as

P
WTP (2, ye) = ) 3'[se(Li, Lo, 7) + 1], (4)
=1

where P denotes the number of neighborhood pixels.

Similar to LTP, the WTP will generate a histogram of size
3P which will grow drastically as P becomes larger. To reduce
the dimension of the histogram, we split the WTP histogram
into two binary patterns (upper pattern and lower pattern)
according to the following equations:

1, if Lzl >

stU(Ii,Ic,T)z{ 0 i o &)

if Ll <o

L oif Al <7
sf(I’UIC’T) = { 0 if Iiljlc > 7 (6)

The corresponding upper WTP and lower WTP are as
follows.

UWTP(zc, ye) Zzlst (I;, 1., 7), 7

LWTP(z., y.) ZQ’st L, I, 7), (8)
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Fig. 2. An example of the WTP computation schema on a 3 x 3 neighborhood
with 7 = 0.2.

By the above method, the dimension of the WTP histogram
is reduced from 3% to 2°+1, Fig. 2 presents an simple example
of the WTP computation schema on a 3 x 3 neighborhood with
T=0.2.

C. Illumination Robustness

Based on the Lambertian reflectance model, we can prove
that WBP and WTP are illumination-insensitive representa-
tions of the original face images and we have

Iy =i - i, ©))

and
I. =71, 1. (10)

in which r; and r. are the reflectance components for the
neighborhood pixel and the center pixel and the illumination
component ¢; and 7. vary slowly in local areas except for the
shadow boundaries, i.e,

i b, i R (11)

Therefore, (2) and (3) can be reformulated as follows:

1, if mEme >
Sb(Ii;IcaT) = { 0 if riT—ch <7 (12)
1, if e >7
se(liy Lo, 7) = 0, if 2 TC| <7 (13)
-1, if Iizfe F < —7

) Te
From the above equations, we can observe that WBP and
WTP are illumination insensitive representations because they
depend only on the reflectance component and have nothing
to do with the illumination component.
WBP and WTP can be viewed as adaptive versions of LBP
and LTP since (2) can be reformulated as

1L if L—1.>7l
sp(Liy I, 7) = { 0, if I;-I.<7l, (1

and (3) can be reformulated as

1, if L—I>7L
se(Ii, I, 1) = 0, if |L—1I|<~7I (15)
1, if -1 < -7,

The threshold is computed based on the intensity of the
center pixel of the region so that a larger threshold is assigned
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Fig. 3. Illustration of the comparison of the LBP, LTP, WBP and WTP image.
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Fig. 5. Histograms of face images with method LBP, LTP, WBP and WTP. (a)
A face image with well illumination; (b) A face image with bad illumination;
(c) A face image with zero-mean Gaussian noise; (d)~(f) The LBP histograms
of face images; (g)~(i) The LTP histograms of face images; (j)~(1) The WBP
histograms of face images; (m)~(o) The WTP histograms of face images .

ilarity measurements of two histograms respectively.

L
in a lighter region and vice versa. The resulting WBP and IS(Hy, Hy) = me( HiHY), (16)
WTP features thus can enhance the robustness to the noise and i1
illumination variations. Fig. 3 illustrates the LBP, LTP, WBP I
and WTP image of four images under different illumination 2(Hy, Hy) = Z Hz) (17)
conditions. ' p H i+ H
g | | TABLE 1
o) RECOGNITION RATES (%) ON EXTENDED YALE FACE
E DATABASE B
LBP
EN I e ad S Method | SI | S2 | S3 S4 S5 [ Average
LBP(IS) | 100 | 100 | 96.92 | 61.03 | 34.87 | 78.56
L 1 LBP(x?) | 100 | 100 | 96.70 | 62.73 | 37.39 | 79.40
R S - i S LTPAS) | 100 | 100 | 97.80 | 76.62 | 58.40 | 86.56
wep - E LTP(x?) | 100 | 100 | 97.36 | 76.05 | 59.24 | 86.53
L | y WBP(IS) | 100 | 100 | 98.46 | 92.59 | 86.97 | 95.60
E g : - 5 WBP(x?) | 100 | 100 | 99.12 | 9525 | 92.58 97.39
— WTPAS) | 100 | 100 | 97.36 | 93.34 | 87.11 95.56
G S S SO NV, WTP(x?) | 100 | 100 | 98.02 | 94.49 | 92.16 | 96.93
Fig. 4. Histograms of face blocks with method LBP, LTP, WBP and WTP. (a)
A face block with well illumination; (b) A face block with bad illumination;
(c) A face block with zero-mean Gaussian noise; (d)~(f) The LBP histograms 100 B g @ ;
of face blocks; (g)~(i) The LTP histograms of face blocks; (j)~(1) The WBP i _;g-————#“"'*‘"' Yy ¥ ¥

histograms of face blocks; (m)~(o) The WTP histograms of face blocks .

III. EXPERIMENTS

In this section, we use the WBP and WTP for illumination-
robust face recognition and our experiments are conducted
on Extended Yale Face Database B with large illumination
variations. All face images from Extended Yale Face Database
B are properly aligned, cropped and resized to 120 x 120.
To obtain a robust feature, each face image is divided into
8 x 8 blocks. Then histograms in each block are calculated and
concatenated as features. The thresholds of WBP and WTP are
set -0.2 and 0.3 separately. We use the normalized histogram
intersection IS(H;, Ho) and x? distance x?(H;, Hs) as sim-
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Fig. 6. The rank 10 recognition rate on Extended Yale Database B with
different methods
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Fig. 7. The robustness to Gaussian noise.

Fig. 4 and Fig. 5 illustrate the LBP, LTP, WBP and WTP
histograms of 3 face blocks and 3 face images separately.
We can find that the histograms of WBP and WTP are
much sparser than those of LBP and LTP. As we know, the
illumination component varies slowly in local areas and the
relative differences between the intensity of the center pixel
and its neighborhoods are usually smaller than the absolute
value of threshold. Since we set thresholds of WBP and WTP
-0.2 and 0.3 separately, we are more likely to encode the
relative difference into (11111111) and (00000000)2, which
are the 58th bin and the first bin.

Table I shows the WBP and WTP recognition performance
on the five subsets of the Extended Yale Face Database B.
The WBP with y? distance achieves the highest average
recognition rate 97.39% and that is 17.99% and 10.86% higher
than LBP and LTP with x? distance respectively. WTP has
similar results as the WBP. Both the WBP and the WTP have
better performance than LBP and LTP in each subset, and
in the last two subsets WBP and WTP perform significantly
better than LBP and LTP, which demonstrates their robustness
to the severe illumination degradation. Fig. 6 illustrates the
rank 10 average recognition rate. Our methods achieve a more
stable and satisfactory result than the other two.

Fig. 7 demonstrates the robustness to noise of the different
local descriptors. The white Gaussian noise with different
variances (0.001, 0.002, 0.003, 0.004, 0.005) were added to
the probe images. The recognition rates of WBP and WTP
drop much slower compared to LBP and LTP while WTP is
more robust to noise than WBP due to ternary encoding.

IV. CONCLUSION

The proposed WBP and WTP are adaptive versions of LBP
and LTP based on Weber’s law. They are illumination insen-
sitive representations and more robust to the noises. Experi-
mental results on extended Yale-B database have demonstrated
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that our proposed WBP and WTP show better performance
than the conventional approaches. This provides new insights
into the role of robust feature extraction under uncontrolled
illumination conditions for face recognition.
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