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Abstract—We report on a P300 based spatial visual brain–
computer interface (BCI) application improvement based on an
inter–stimulus–interval (ISI) optimization. The proposed system
allows for nine commands’ application using a non–invasive
electroencephalography (EEG) brainwave monitoring. This paper
presents the experiments results obtained by relying entirely on
the visual oddball paradigm–based interaction. The visual stimuli
are generated utilizing images on a computer screen arranged
in a 3 × 3 matrix. The visual stimuli are used to elicit event
related potentials (ERPs) with P300 components elicited to the
intentional targets. The resulting ERPs are processed to extract
the P300 responses in EEG features for a subsequent classification
accuracy analysis. We propose to utilize a linear support vector
machine (linSVM) classifier in offline EEG data post–processing
analysis scenario. We discuss results of experiments conducted
with five healthy users. We compare BCI accuracy results from
two experimental setups with different ISI settings.

I. INTRODUCTION

Brain–computer interface (BCI) is defined as a communi-
cation system in which messages or commands that an user
sends to the external world do not pass through the brain’s
normal output pathways of peripheral nerves and muscles [1],
[2]. There are already several BCI applications spanning from
spellers [3] to online mental robot control implementations [4],
[5].

Following the above ideas, we propose a spatial visual BCI
for locked–in patients [6]. Figure 1 presents a diagram of the
proposed BCI prototype that can perform the following func-
tions: firstly, it creates a stimulus using the visual generation
system that we developed; secondly, it captures and analyzes
EEG event–related potential (ERP) responses to the attended
and ignored spatial visual stimuli; finally, it classifies the brain
responses to generate BCI commands for the user application.
We also use an auditory feedback modality to keep the user
visual sense dedicated to the visual stimuli.

From now on the paper is organized as follows: first section
describes the general architecture of the proposed system
and discusses the chosen methods, as well as conducted
experiments; in the third section we compare results from
two different experiments with varying ISI settings; finally we

discuss results obtained from an offline analysis of EEG data
recorded during online BCI sessions with five subjects; finally,
conclusions and future research remarks summarize the paper.

II. METHODS

In the proposed BCI paradigm in this paper, we employ a
visual paradigm utilizing a fact that given a visual stimulus,
the human brain generates the ERP pattern [1]. Additionally
depending on user’s intention the visual evoked potential
(VEP), which is the modality specific ERP, is modulated
creating the so–called P300 or “aha” response [8]. The P300
responses are usually evoked in an oddball paradigm, in which
rare stimuli (targets) are presented together randomly with
distractors (non–targets) [1].

When a machine learning algorithm accurately classifies the
P300 brain response, it allows the user’s intention to be trans-
lated, using the BCI application, to select a command mapped

Fig. 1. Schematic diagram of the spatial visual BCI application. EEG signals
are processed and classified by OpenVibe [7] software processing stages in
synchrony with presented visual stimuli to generate interactive commands.
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on an planned visual stimulus target. In this study, we focus on
using a linear support vector machine (SVM) [9] as a classifier
to improve our online system. State–of–the–arts BCI usually
rely on a linear discriminant analysis (LDA) technique [7],
[10]. We show classification accuracy improvement and an
evaluation of our designed system in the next section. After
that, we explain our proposed system architecture, experimen-
tal settings, and the chosen electroencephalography (EEG) data
processing methods.

A. Proposed Visual BCI Architecture

We implement an experimental environment composed of
two modules. The first module handles the visual stimulus
generation and interaction with the user. The second module
carries out EEG signals’ acquisition and processing; P300
response feature classification; and the final generation of
BCI commands. The second module is implemented in a new
BCI open source development environment OpenVibe [7].
OpenVibe is very flexible visual programming environment
that offers a possibility to expand and customize experimental
blocks using Python, Java, Matlab or Lua scripting languages.

The two experimental modules interact together using
virtual–reality peripheral network (VRPN) protocol. A devel-
oped visual stimuli platform (VSP) sends time triggers to the
OpenVibe application when a new visual stimulus is presented
to the user. Based on this trigger, the second experimental
module analyzes the corresponding VEP signals to extract and
classify the user intentional P300 responses.

B. EEG Experimental Settings

During the online BCI experiments, the EEG signals
were captured with an EEG amplifier system g.USBamp
by g.tec medical instruments GmbH, Austria. Eight active
g.LADYbird electrodes (by the same manufacturer) were used.
The electrodes were attached to the following head locations
Cz,CPz, POz, Pz, C3, C4, P3, and P4 as in the 10/10 ex-
tended international system [11] as shown in Figure 2. Ground
and reference electrodes were attached at FCz position and
a left earlobe, respectively. A sampling frequency was set to
512 Hz.

Each user accomplished eight sessions with two experimen-
tal settings as summarized in Table I. Each protocol consisted
of four experiments. We extended the first experiment to
15 trials per target to gather more data to train a classifier
(15 trials averaging procedure). After the training of a linear
discriminative analysis (LDA) classifier [10], [12], the online
test experiments were performed with shorted to five ERP
averaging procedure. There were a total of nine up, up–right,
right, down–right, down, down–left, left, up–left, and center
target focus sessions. During the experiments, the users were
instructed to focus and count the particular target stimulus
appearances on the computer display. An auditory feedback
with P300 classification results was provided to the users in
order to avoid any visual distractions during the experiments.

The main difference between the protocols one and two
was an inter–stimulus–interval (ISI) length, which is the major

Fig. 2. EEG electrode positions in our experiments marked in green and
localized within the the 10/10 international system [11] layout.

research question tested in this paper. In the experiments
reported in this paper, five volunteer BCI users took part (mean
age of 27.6 years old with a standard deviation of 10.31).
We conducted all the experiments in the BCI–lab [13] at Life
Science Center of TARA, University of Tsukuba, Tsukuba,
Japan. The online EEG BCI experiments were conducted in
agreement with the WMA Declaration of Helsinki - Ethical
Principles for Medical Research Involving Human Subjects.
The psychophysical and EEG experiments were conducted
in agreement with the ethical committee guidelines of the
Faculty of Engineering, Information and Systems at University
of Tsukuba, Tsukuba, Japan.

C. EEG Processing and Classification

An in–house expanded OpenVibe module was developed
in order to record and process EEG signals. The goal of
the software extension was to properly segment and classify
P300 responses in the multi–module experimental environ-

TABLE I
BCI EXPERIMENTAL SETTINGS OF THE TWO TESTED PROTOCOLS

Experimental Protocol one Protocol two
parameter setting setting

Stimulus length 0.05 s 0.05 s
ISI 200 ms 100 ms
Training trials 15 15

Testing trials 5 5

All training stimuli
1080 non–targets 1080 non–targets
135 targets 135 targets

All test stimuli
360 non–targets 360 non–targets
45 targets 45 targets

Experiment length 119.25 s 78.75 s
Classification speed 4.53 selections/minute 6.86 selections/minute
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TABLE II
ONLINE BCI EXPERIMENT ACCURACY RATES (CHANCE LEVEL OF

11.11%) USING LDA CLASSIFIER FOR THE PROTOCOLS ONE AND TWO

Protocol one with ISI = 200 ms

User
Online BCI accuracies

Test #1 Test #2 Test #3 Average

#1 44.44% 66.66% 77.77% 62.96%

#2 0.00% 11.11% 0.00% 3.70%

#3 11.11% 44.44% 33.33% 29.63%

#4 33.33% 11.11% 22.22% 22.22%

#5 22.22% 11.11% 11.11% 14.81%

Grand average 26.66%

Protocol two with ISI = 100 ms

User
Online BCI accuracies

Test #1 Test #2 Test #3 Average

#1 33.33% 33.33% 33.33% 33.33%

#2 0.00% 11.11% 11.11% 7.41%

#3 0.00% 22.22% 0.00% 7.41%

#4 11.11% 11.11% 11.11% 11.11%

#5 33.33% 33.33% 55.55% 40.74%

Grand average 20.00%

ment developed by our team. As pre–processing and artifacts
rejection steps we applied a band–pass filter in a range of
0.01 ∼ 30.00 Hz to separate the amplifier drift and the
electromyographic (EMG) interferences from the EEG signals
carrying the ERP responses. Additionally notch filter was used
to filter the power line interference together with possible
subharmonics in a rejection band of 48 ∼ 52 Hz. In order
to further suppress eye–blink related muscular interferences an
EEG amplitude–based thresholding identification and rejection
technique was applied with an absolute value set to 80 µV.

Taking advantage of the time triggers marking VEP onsets
we segmented the EEG signals to 600 ms long “epochs.”
Next the EEG signals were down–sampled to a sampling
frequency equivalent to 32 Hz in order to reduce dimensional-
ity of brainwave features subsequently used for classification.
ERPs were next averaged in a final noise removal step. The
so pre–processed brainwaves where next classified with the
LDA classifier [7], [10]. The following section describes the
results obtained from BCI online and offline post–processing
experiments with five healthy users.

III. RESULTS

Figures 3 and 4 present the grand mean averaged ERP
responses obtained from the two experimental protocols dis-
cussed in this paper. In the above figures positive deflections
(the so–called P300 or “aha-responses”) within latencies of
200 ∼ 600 ms could be observed.

Table II shows the results from the online BCI experiments
(instant feedback given to the users) using the LDA for
classification in two protocols using ISI of 200 ms and 100 ms.
Overall observed accuracy was better in the first protocol using
ISI of 200 ms. A chance level in all experiments was of
11.11 %.

TABLE III
OFFLINE BCI EXPERIMENT ACCURACY RATES (CHANCE LEVEL OF

11.11%) USING LINSVM CLASSIFIER FOR THE PROTOCOLS ONE AND TWO

Protocol one with ISI = 200 ms

User
Offline BCI accuracies

Test #1 Test #2 Test #3 Average

#1 55.55% 33.33% 55.55% 48.14%

#2 55.55% 55.55% 88.88% 66.66%

#3 88.88% 77.77% 66.66% 77.77%

#4 66.66% 77.77% 77.77% 74.07%

#5 55.55% 55.55% 44.44% 51.85%

Grand average 63.70%

Protocol two with ISI = 100 ms

User
Offline BCI accuracies

Test #1 Test #2 Test #3 Average

#1 55.55% 66.66% 55.55% 59.25%

#2 66.66% 44.44% 66.66% 59.25%

#3 88.88% 77.77% 77.77% 81.47%

#4 88.88% 100.00% 100.00% 96.29%

#5 55.55% 88.88% 66.66% 70.36%

Grand average 73.33%

We opted for the offline analysis of the EEG signals from
the above analyzed online experiments (recorded data post–
classification without a feedback given to the users) using a
linear SVM (linSVM) [9], [14] classifier to improve the overall
performance of the proposed BCI system.

Table III shows the classification accuracy of each test
experiment using the two protocols with two ISIs of 200 ms
and 100 ms. An open source toolbox libSVM [9] was used in
Matlab to implement the libSVM classification algorithm. For
the both experimental protocols the proposed linSVM method
scored higher than the original used LDA method (compare
Tables II and III). In this case again the overall observed BCI
accuracy was better in the second protocol.

We also computed the information transfer rates (ITRs) [15]
in bits per minute (bit/min) to evaluate the two protocols and
the evaluated two classification techniques. The ITR scores
have been summarized in Tables IV and V.

TABLE IV
ITR RESULTS OF THE PARTICIPATING USERS FOR THE BOTH PROTOCOLS
USING LDA CLASSIFIER (MAXIMUM ITRS WERE OF 16.91 BIT/MIN AND

28.18 BIT/MIN FOR ISIS OF 200 MS AND 100 MS, RESPECTIVELY)

User ITR in protocol one ITR in protocol two
number [bit/min] [bit/min]

#1 5.90 2.24

#2 0.28 0.00

#3 0.97 0.00

#4 0.39 0.00

#5 0.05 3.71

Average 1.52 1.19
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Fig. 3. The grand mean average ERP brain responses of the protocol one (ISI = 200 ms) with purple and blue middle lines depicting targets and non–targets,
respectively. Standard error intervals are visualized also around the mean traces.

Fig. 4. The grand mean average ERP brain responses of the protocol one (ISI = 100 ms) with purple and blue middle lines depicting targets and non–targets,
respectively. Standard error intervals are visualized also around the mean traces.
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TABLE V
ITR RESULTS OF THE PARTICIPATING USERS FOR THE BOTH PROTOCOLS
USING LINSVM CLASSIFIER (MAXIMUM ITRS WERE OF 16.91 BIT/MIN
AND 28.18 BIT/MIN FOR ISIS OF 200 MS AND 100 MS, RESPECTIVELY)

User ITR in protocol one ITR in protocol two
number [bit/min] [bit/min]

#1 3.28 8.64

#2 6.67 8.64

#3 9.27 17.09

#4 8.35 25.15

#5 2.73 12.48

Average 6.06 14.40

IV. CONCLUSIONS

We conducted a series of EEG experiments to evaluate our
proposed spatial visual stimuli BCI system. Using the linSVM
classification approach in offline analysis mode we managed
to improve the BCI accuracy of the proposed system. The
offline chosen method can be implemented next online, which
is a target of our near future project. The results also have
shown that the classification accuracies were better for the ISI
of 200 ms.

We plan to continue this line of research or order to further
improve and validate the proposed spatial visual BCI paradigm
for locked–in patients in need.
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