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Abstract—We present a study of a support vector machine
(SVM) application to brain–computer interface (BCI) paradigm.
Four SVM kernel functions are evaluated in order to maximize
classification accuracy of a four classes–based BCI paradigm uti-
lizing a code–modulated visual evoked potential (cVEP) response
within the captured EEG signals. Our previously published
reports applied only the linear SVM, which already outperformed
a more classical technique of a canonical correlation analysis
(CCA). In the current study we additionally test and compare
classification accuracies of polynomial, radial basis and sigmoid
kernels, together with the classical linear (non–kernel–based)
SVMs in application to the cVEP BCI.

I. INTRODUCTION

A code–modulated visual evoked potential (cVEP) is a brain
ordinary response to a visual stimulus with determined code–
modulated sequence [1], [2], [3]. The cVEP is occurring EEG
captured on a scalp when a user gazes at a light source
which blinks with a designed code–modulated pseudo–random
sequence.

The cVEP response gained recently popularity in applica-
tion to brain computer interfaces (BCIs) [1], [2], [3], which
enable a control of a computer or any machine without body
muscular activities [4]. The cVEP is easily evoked by a human
brain, thus the BCI–based on this paradigm shall potentially
result with higher information transfer rate (ITR) [4], which is
a measure commonly used to compare interfacing prototypes.

There are several contemporary approaches to classify
multi–class cVEP response–based EEG signals. A canonical
correlation analysis (CCA) has been extensively tested al-
ready [5], which is a method employing a pattern matching
approach to calculate multichannel correlation coefficients
used next for the attended stimulus pattern identification. In
our previous project we also tested the CCA methods [2] to
reproduce the previously mentioned results. We could observe
that a support vector machine (SVM) [6] method could im-
prove additionally and statistically significant the results of the
CCA as tested on the same user group [3].

The SVM is a classification method, which finds a hyper-
plane located between the classes [6]. It performs usually well
as a general classification method, but the classifier perfor-
mance depends on many parameters, which have to be tuned

in order to optimize resulting accuracies. The SVM’s kernel
function is one of the critical settings and it highly affects clas-
sification accuracy. In our previously reported projects [2] only
linear SVM without consideration of alternative kernels for a
possible classification accuracy boosting. The kernel function
allows for a transformation of the EEG cVEP features to a
hyperplane space resulting with more simple discriminability.
The above mentioned transformation is very critical in case
the original feature space cannot result with linear function
based discriminability.

In this paper, we report various SVM kernels’ study for
cVEP classification accuracy improvement in application to
visual BCI paradigms. The tested kernels are: linear (non–
kernel); polynomial; radial basis (RBF); and sigmoid [7]. We
employ a library LibSVM [7], which is an open source SVM
project suitable for our comparison study.

In this study, four types of cVEPs are evoked by visual
stimulation using the RGB LEDs, which flash in green–
blue and white–black color options. Additionally two carrier
frequency are tested of 30 Hz (to compare with regular
computer screen–based SSVEP experiments) and 40 Hz (to
check feasibility of higher frequency–based BCI paradigms).
The four combinations of stimuli are tested and reported in this
paper. Additionally, to verify an effect of cVEPs’ averaging
on the final classification accuracy scores, we also test the
numbers of averaging steps in a range of 1 ∼ 5. The averaging
procedure usually contributes to a removal cVEP’s unrelated
noise, which is usually captured together with the EEG signals.

From now on the paper is organized as follows. In the
next section we present materials and methods of the study.
Results follow and finally conclusions are presented together
with future research perspectives.

II. MATERIALS AND METHODS

The experiments reported in this paper were performed in
the Life Science Center of TARA, University of Tsukuba,
Japan. All the experimental procedure details and the research
targets of the developed within the presented project’s visual
BCI (cVEP–based) paradigm were explained carefully to the
nine participating users. All the users agreed voluntarily to
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participated in the study and they signed informed consents.
There were no monetary compensations for the participating
users.

The EEG cVEP–based BCI experiments were conducted
in accordance with The World Medical Association Decla-
ration of Helsinki - Ethical Principles for Medical Research
Involving Human Subjects. The experimental procedures were
also approved and peer–reviewed by the Ethical Committee of
the Faculty of Engineering, Information and Systems at Uni-
versity of Tsukuba, Tsukuba, Japan (experimental permission
no. 2013R7).

The average age of the users was of 26.9 years old (standard
deviation of 7.3 years old). A single female and eight male
users participated in the study.

A. Experimental Settings

To evoke the cVEP responses, captured in the continuously
recorded EEG signals, the visual stimuli were presented to
the user as blinking light sources using the red–green–blue
(RGB) LEDs. During the cVEP–based BCI EEG experiments
the user was seated on a comfortable chair in front of the four
LEDs attached to a rectangular frame as depicted in Figure 1.
A distance between user’s eyes and the LEDs was about 30 ∼
50 cm. The exact distance setting was chosen by each user for
a comfortable view of the all the four LEDs. The experimental
room had an ambient light as in an usual office.

In order to remove power line interference from EEG a
notch filter was applied in a frequency band of 48 ∼ 52 Hz.
Additionally a band–pass filter to remove eye blinks and high
frequency muscle–originating noise was applied in a band of
5 ∼ 100 Hz. Details of the EEG experimental set–up are
summarized in Table I. To remove any possibility of capturing
user’s eye blinks, each trial to gaze at a single LED was
separated with several seconds long and user–paced pauses.

Fig. 1. A user holding a frame with four LEDs attached to each edge. The
user is wearing the EEG cap and g.USBamp amplifier on the left together
with a trigger capturing box g.TRIGbox, all by g.tec medical instruments
GmbH, Austria, are also presented. The photograph is reproduced with the
user’s consent.
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Fig. 2. Spectra of the two visual stimuli generated with the same m −
sequence and presented to subjects with two carrier frequencies of 30 Hz
and 40 Hz.

The 60 cVEPs were collected for each of four LED blinking
with m− sequences′ generated targets.

The m − sequence is a binary pseudorandom generated
signal, which could be calculated for each latency n as follows,

x(n) = x(n− p)⊕ x(n− q), (p > q), (1)

where x(n) is the nth element of the m− sequence obtained
by the exclusive–or (XOR) operation, denoted by ⊕ in the
equation (1), using the two preceding elements indicated by
their positions (n−p) and (n−q) in the string. In this project
p = 5 and q = 2 were chosen. An initial binary sequence
was decided, to create the final m − sequence, used in the
equation (1), as follows,

xinitial = [0, 1, 0, 0, 1]. (2)

Finally, the 31 bits long m−sequence was generated based
on the above initial string as in equation (2). The spectra of
the m−sequence obtained from the equation (1) using initial
values listed in (2) have been depicted in Figure 2 clearly
supporting a hypothesis of broadband frequency nature of this
type of visual stimulus.

The LEDs were controlled from ARDUINO UNO micro–
controller board which send square waves reproducing the
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Fig. 3. A procedure of generation cVEP features used in a subsequent SVM
classification. The original m − sequence generated by the equation (1) is
denoted by 1©. In the SVM classifier training session only cVEP features
obtained in response to 1© were used together with circularly shifted features
2©′ and 3©′, based on an assumption that the responses 2© ≈ 2©′ and 3© ≈
3©′. In the cVEP classification accuracy testing session using the above trained

SVM the user gazed at each stimulator to evoke separate cVEPs (no more
algorithmically shifted).

four m − sequences obtained from circular shifts of the
original one. The circular shift on τ = 7 bits was additionally
multiplied for the remaining sequences of 2 · τ and 3 · τ ,
respectively. The micro–controlled program was written in C–
language by our team.

The m − sequence autocorrelation has a single dominant
peak. This feature is beneficial to evoke separable cVEPs
(easy to discriminate due to non–periodic patterns by SVM
classifiers).

B. The cVEP Responses Classification

Interestingly, only one command dataset is enough for
SVM classifier training as shown in Figure 3. The remaining

TABLE I
EEG SIGNALS RECORDING CONDITIONS

Experimental setting Detail

Number of users 9 (8 males and 1 female)

Average age of users
26.4 years old
(standard deviation of 7.0 years)

Single session length 8 or 11 seconds

m− sequence length T 516.7 or 38.75 ms (31 bits)

m− sequence shifts τ 116.7 or 87.5 ms (7 bits)

EEG amplifier
g.USBamp with wet active g.LADYbird
electrodes by g.tec medical instruments
GmbH Austria

Electrode locations O1, O2, Po3, Po4, P1, P2, Oz, Poz

Reference electrode position Left earlobe

Ground electrode position FPz

Sampling frequency 512 Hz

Notch filter
Butterworth 4th order with rejection
band of 48 ∼ 52 Hz

Band–pass filter
Butterworth 8th order with pass
band 5 ∼ 100 Hz
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Fig. 4. Averaged cVEP responses with circular shifts. The star symbols (∗)
on a horizontal axis depict the ANOVA estimated statistically significant
differences among the latencies (p < 0.01) of circularly shifted cVEPs.

classifier training patterns can be generated by circular shift of
the cVEP EEG responses similarly as the m−sequences could
be obtained using the same process illustrated in Figure 3.

The 60 cVEP responses for only single command #1
(located at the top of the frame presented in Figure 1) were
recorded twice in order to use them for classifier’s training and
testing separately. The remaining 60 cVEP features (responses
to the bottom, right and left stimulators as shown also in
Figure 1) were captured only once for the classification testing
procedure. Totally 300 responses were recorded in the single
experimental session.

In the SVM classifiers’ training and testing sessions (for
all kernels including linear, polynomial, radial basis, and
sigmoid), the averaged cVEPs formed a single feature as
follows,

ȳi,l =
1

M

l+M−1∑
j=l

yi,j , (3)

where M = 1, 2 . . . 5, and yi,l was the averaged cVEP evoked
by the stimulator i = (1, 2, 3, 4). l = 1, 2, . . . , N−M+1 was
the dataset number. In the both SVM classifier training and
testing sessions the same number of M = 1, 2 . . . 5 of cVEP
averages were used for features’ generation.
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Fig. 5. Classification results of the four SVM kernel function types in
application to cVEP responses using green–blue LEDs and carrier frequency
of 40 Hz. The mean line scores are surrounded by standard error bars
calculated from averaged responses. The horizontal axis represents the number
of cVEP averages (M = 1, 2 . . . 5) used to remove EEG noise.
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Fig. 6. Classification results of the four SVM kernel function types in
application to cVEP responses using green–blue LEDs and carrier frequency
of 30 Hz. The mean line scores are surrounded by standard error bars
calculated from averaged responses. The horizontal axis represents the number
of cVEP averages (M = 1, 2 . . . 5) used to remove EEG noise.

III. RESULTS

The classification results of the presented evaluation of four
SVM classifiers for cVEP–based BCI prototype have been
presented in form of error–bar plots in Figures 5, 6, 7, and 8
and averaged accuracies in Table II.

The results have shown that the linear SVM scored the best
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Fig. 7. Classification results of the four SVM kernel function types in
application to cVEP responses using white–black LEDs and carrier frequency
of 40 Hz. The mean line scores are surrounded by standard error bars
calculated from averaged responses. The horizontal axis represents the number
of cVEP averages (M = 1, 2 . . . 5) used to remove EEG noise.
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Fig. 8. Classification results of the four SVM kernel function types in
application to cVEP responses using white–black LEDs and carrier frequency
of 30 Hz. The mean line scores are surrounded by standard error bars
calculated from averaged responses. The horizontal axis represents the number
of cVEP averages (M = 1, 2 . . . 5) used to remove EEG noise.

for of the all tested cVEP cases (see Figures 5, 6, 7, and 8). The
polynomial, sigmoid and radial basis kernels scored with lower
accuracies. Especially, the sigmoid kernel SVM classification
accuracy with non averaged cVEP (number of cVEPs equal
to one in Figures 5, 6, 7, and 8) resulted with theoretical
chance level of 25%. The larger the number of averaged cVEPs
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Fig. 9. Classification results of the four stimulation types using linear SVM.
The mean line score are surrounded by standard error bars calculated from
averaged responses. The horizontal axis represent the number of cVEP
averages used to remove EEG remove noise.

were used, the better SVM classification accuracy results were
obtained for all the tested kernels as clearly visualized with a
positive trend of averaged results in Figures 5, 6, 7, and 8.

The classification results of the linear SVM have been also
compared among the stimulation types as depicted in Figure 9
and summarized in Table III. The results have shown that
white–black cVEP with 30 Hz carrier frequency scored the
best for any number of response averages used.

TABLE II
FIVE ERP AVERAGES–BASED CVEP CLASSIFICATION ACCURACY

RESULTS WITH FOUR KERNEL FUNCTIONS AND FOUR VISUAL
STIMULATION TYPES

LED light colors SVM kernel type and resulting accuracies

and visual
linear

polynomial radial basis sigmoid

stimulation types kernel kernel kernel

green & blue with

72.64% 67.46% 41.20% 58.88%40 Hz carrier

frequency

green & blue with

82.44% 78.62% 44.37% 71.16%30 Hz carrier

frequency

white & black with

80.38% 74.16% 51.36% 62.62%40 Hz carrier

frequency

white & black with

90.08% 85.86% 51.39% 69.49%30 Hz carrier

frequency

TABLE III
P–VALUES OF MULTI–COMPARISON CALCULATED BY TUKEY–KRAMER

METHOD IN CASE OF LINEAR SVM (THE “∗” SYMBOLS MARK THE
RESULTS WITH p ≤ 0.05)

LED light Multi–comparison Tukey–Kramer calculated p–values
colors and using different numbers of averaged cVEP responses
stimulation

No 2 3 4 5
types

green & blue

0.111 0.030∗ 0.102 0.046∗ 0.043∗
with 40 Hz
carrier versus
green & blue
with 30 Hz

green & blue

0.047∗ 0.014∗ 0.013∗ 0.007∗ 0.005∗
with 40 Hz
carrier versus
white & black
with 40 Hz

green & blue

0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗
with 40 Hz
carrier versus
white & black
with 30 Hz

green & blue

0.986 0.994 0.873 0.927 0.898

with 30 Hz
carrier versus
white & black
with 40 Hz

green & blue

0.019∗ 0.009∗ 0.002∗ 0.008∗ 0.006∗
with 30 Hz
carrier versus
white & black
with 30 Hz

white & black

0.051 0.021∗ 0.026∗ 0.052 0.047∗
with 30 Hz
carrier versus
white & black
with 40 Hz

On the other hand, the green–blue cVEP with 40 Hz carrier
frequency resulted with lowest accuracies. There were no
statistically significant differences of classification accuracies
among the white–black cVEPs with 40Hz carrier frequencies
and green–blue with 30 Hz, respectively, as summarized in
Table III.

IV. CONCLUSIONS

In this paper we have shown a comparison of four SVM
kernel function–based classification accuracy results of the
cVEP brain responses in application to the visual BCI. As a
clear result of the conducted study the linear SVM was identi-
fied as the best classifier of cVEP responses in comparison to
polynomial, radial basis and sigmoid kernels. Additionally, the
BCI classification accuracies in case of the white–black and
30 Hz carrier frequency cVEPs resulted with the best scores
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in case of linear SVM application.
Also the averaging procedure of cVEP responses clearly

enhanced the SVM classification outcomes for all of the tested
kernels.

We plan to continue this line of research to develop safe,
non–annoying and possibly benefiting the future users of
visual BCIs in need.
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