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Abstract—Since teams in a sporting league compete head-to-
head according to a structured schedule, it is natural to interpret
statistics emanating from competitions as signals on a graph
modeling similarities among competing entities. In this paper, we
analyse available sports statistics to predict game outcomes from
a graph signal processing (GSP) perspective: GSP tools are used
to remove (denoise) unwanted variability to reveal underlying
predictable trends, and to interpolate missing data—predicted
game outcomes in terms of point differential. First, we construct
a graph for the desired graph-signal (point differential for every
team pair): for an N -team league, we construct N subgraphs
Gj , each containing N − 1 nodes representing teams competing
against opponent j. We next assign weight to each intra-subgraph
edge based on similarity in observed statistics (e.g., total points
scored, assists, etc) of the two connecting nodes (teams). We
then connect nodes in different subgraphs representing the same
teams, where the weight of an inter-subgraph edge connecting
nodes in subgraphs Gk and Gl now reflects the similarity between
opponents k and l. Finally, assuming a graph-signal smoothness
prior, we compute the desired graph-signal on the constructed
graph via an alternating convex programming procedure. Exper-
imental results show that our graph-based scheme achieves better
prediction than a competing k-nearest neighbor (kNN) scheme.

I. INTRODUCTION

Professional sports is a multi-billion dollar business. The
financial value of a professional team is explicitly tied to its
success on the playing field. To maximize a team’s success, in
the past decade there is a drive towards data-driven analysis
of sports statistics to predict the performance of professional
teams and players1. In this paper, we adopt a signal processing
approach to analyse publicly available head-to-head sports
statistics to predict game outcome of any matchup between
two competing entities in a sporting league.

In particular, we pose the data analysis problem from a
graph signal processing (GSP) perspective [1]. GSP is the
study of signals that exist naturally on structured data kernels
described by graphs; examples of graph-signals include tem-
perature collected by distributed sensors in a wireless network,
and messages posed by a group of friends connected in an
online social network. In a sporting league, teams compete
according to a structured schedule, and thus it is natural
to interpret statistics emanating from scheduled competitions

1As a concrete illustration, bestseller “Moneyball” chronicled Major League
baseball Oakland Aces general manager Billy Beane’s reliance on analytics
to field a competitive team in 2002 despite their limited payroll.

as signals on graphs modeling similarities among competing
entities. Observed statistics contain variability due to non-
stationary game-to-game conditions, such as players’ physi-
cal states on a given day, in-game reactionary decisions by
players and referees, etc. We model this variability as random
noise, and GSP supplies tools [2–7] to denoise the signal
to extract the predictable components from the observations.
Observed statistics are also incomplete; an N -team league
typically has far fewer than N(N−1) sets of reliable statistics
due to scheduling constraints. GSP provides tools [8–10] to
interpolate missing samples in a desired graph-signal—point
differential for every pair of teams in our case. Interpolated
samples are thus our predicted game outcomes in future
matchups in terms of point differential.

Specifically, we design a graph signal analysis framework to
study sports statistics as follows. First, we construct a graph a
priori for the desired graph-signal (point differentials): for an
N -team league, we construct N subgraphs Gj , each containing
N − 1 nodes representing teams competing against common
opponent j. We next assign a weight to each intra-subgraph
edge based on similarity in observed statistics (e.g., total points
scored, assists, etc) of the two connecting nodes (teams); more
similar team pairs will have larger edge weights. We then
connect nodes in different subgraphs representing the same
teams, where the weight of an inter-subgraph edge connecting
nodes in subgraphs Gk and Gl now reflects the similarity
between opponents k and l. Finally, assuming a graph-signal
smoothness prior, we compute the desired graph-signal on
the constructed graph via an alternating convex programming
procedure. Experimental results show that our graph-based
scheme achieves better prediction than a competing k-nearest
neighbor (kNN) scheme.

The outline of the paper is as follows. We first overview
related work in Section II. We then describe the graph-signal
smoothness prior in Section III. We formulate our graph-
based data analysis problem in Section IV, and present our
optimization algorithm in Section V. Finally, experimental
results and conclusion are presented in Section VI and VII,
respectively.

II. RELATED WORK

The majority of available literature on sport event predic-
tion of head-to-head matches employ a statistical learning
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approach: generic learning models like Gaussian Markov
Random Field (GMRF), Gaussian Mixture Models (GMM) etc
are first chosen a priori, large amount of data are collected
for statistical analysis to derive parameters of chosen models
best fitted to the available data, and finally, desired output like
players’ rank, match winning probabilities, match outcomes
are predicted based on developed models.

Specifically, a representative work [11] combines Bayes
inference and rule-based reasoning for soccer matches pre-
diction. Each game is represented as a series of tides (ball
possession periods). Probabilities of some events, like possible
player substitute or change of formation, are calculated on the
basis of previous data in each tide and are used to fire certain
rules to determine the decisions for the next tide. Another
common approach is the use of artificial neural networks [12,
13] to train the multi-layer perceptron based on a number of
statistic data. All of these methods suffer from unavoidable
noise corruption in the observed low-level statistics without
explicitly first pre-processing them [14].

Other approaches have also been used in sports games,
other than the prediction of match outcomes. In the basketball
domain, Polese et al. [15] present a pre-game and post-game
analysis system based on the data mining and fuzzy evaluation,
to provide a performance evaluation of the players and predict
their performances in the upcoming matches. Such a system
also helps the basketball coaches in making tactical/technical
decisions during matches. Naı̈ve Bayes classifiers are proposed
to predict the Cy Young Award winners in American baseball
in [16]. The system has the winners successfully predicted over
80% of the prizewinners in the period from 1967 to 2006.

A notable work is [17], where factor graphs are used to
model interaction among players and Bayesian analysis is used
to determine players’ rank. The rank is then used to assess
players and to predict particular match outcomes in terms of
wins / loses.

In summary, the majority of the state-of-the-art studies on
head-to-head matches train generic statistical models based
on large quantity of available data for prediction. In contrast,
in our case the potential dearth of data (e.g., two NBA
teams may play against one another only once a season)
means statistically significant conclusions may not be possible
through traditional statistical analysis. Thus we opt instead a
deterministic approach, where by leveraging on the domain
knowledge of our specific problem, we first construct a suitable
graph structure a priori that reflects team similarities. We
then formulate an objective function to jointly denoise a
single large deterministic graph-signal and interpolate missing
samples using a graph-signal smoothness prior. In doing so,
our proposed method extracts the predictable components
from limited noise-corrupted observations thanks to domain-
specific knowledge and smoothness assumption, improving the
accuracy of match outcome prediction.

III. GRAPH-SIGNAL SMOOTHNESS PRIOR

As in any inverse problem, a signal prior for the desired
signal x is needed for regularization, so that the optimization

problem to identify the desired signal is well posed. As done
in [3–7, 10], in this paper we also employ a graph-signal
smoothness prior: a signal x is more probable if xTLx is
small, i.e.,

Pr(x) = exp

{
−xTLx

σ2
x

}
(1)

where L is the graph Laplacian for signal x and σ2
x is a model

parameter. One interpretation is that (1) is a GMRF generative
model for signal x, where L is the precision matrix [18]. We
instead take a graph spectral interpretation, leading to a notion
of smoothness for a deterministic signal on a defined graph.

Specifically, we first construct a graph G where the nodes
in the graph correspond to signal samples in x. Edges connect
signal samples in G, whose weights wi,j reflect the degree
of similarity between connecting nodes i and j. Having
defined edge weights, one can define the adjacency matrix
W where the (i, j)-th entry is Wi,j = wi,j . The degree
matrix D is a diagonal matrix where the i-th diagonal entry
is Di,i =

∑
j Wi,j . The combinatorial graph Laplacian L is

then defined as the difference between the degree matrix D
and the adjacency matrix W [1]:

L = D−W (2)

It can be shown [1] that the Laplacian regularizer xTLx is
a measure of variation in the signal x modulated by weights
wi,j :

xTLx =
∑
i,j

wi,j(xi − xj)2 (3)

Thus xTLx is small if the squared signal variation (xi−xj)2

is small or the modulating weight wi,j is small.
Given L is positive semi-definite, one can perform eigen-

decomposition on L to obtain non-negative eigen-values λk
and eigen-vectors φk. We can then express xTLx alternatively
as:

xTLx =
∑
k

λkα
2
k (4)

where eigen-value λk can be interpreted as the k-th graph
frequency, and αk = φTk x is the coefficient for the k-th graph
frequency. In this interpretation, a small xTLx means that
the energy of the signal x is concentrated in the low graph
frequencies.

IV. PROBLEM FORMULATION

A. Analysis Overview

We now formulate our graph-signal analysis (joint denoising
/ interpolation) problem. We assume that the aggregate low-
level statistics of all teams and point differentials of a sufficient
number of head-to-head competitions in a targeted sporting
league are available for analysis. By head-to-head competition,
we mean that a team i is competing directly against a team j.
Examples include individual sports such as tennis and ping-
pong and team sports such as basketball and volleyball. For
team sports, we gather statistics of the entire team rather than
individuals in the team. Analysis of open competitions like
golf is considered out-of-scope.
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By low-level statistics, we mean a quantifiable number tab-
ulated using an accepted, sport-dependent statistical definition
that reflects a team’s offensive / defensive performance during
the course of the season thus far. Examples of statistics in
basketball are total points scored, assists, three pointers made,
free throws made, etc. Examples of defensive statistics are
steals, blocks, defensive rebounds, etc.

Our objective is to analyse available data, so that the
expected point differential of team i against team j can be
estimated for each pair of teams (i, j) in the league. A
positive head-to-head point differential would mean that team
i is expected to beat opponent j (and vice versa). Beyond a
binary game outcome predictor (win / lose), our prediction
in point differentials can be compared against point spread
set by gambling establishments for spread betting2. Note
that previous works like [17] consider only coarse-grained
predictions of wins / loses, rather than fine-grained predictions
of point differentials.

In the following sections, we describe our proposed method-
ology to construct a graph and compute edge weights. Finally,
we formulate an objective function for optimization.

B. Graph Construction

Fig. 1. Example of four subgraphs connected to a large graph for four teams.
Intra-subgraph edges are black, and inter-subgraph edges are blue or red for
team 2 and 3 respectively.

Towards meaningful GSP computation, we construct an
appropriate graph a priori for the intended signal—expected
point differentials in head-to-head competitions in our case.
We first construct a suitable subgraph3 Gk for point differen-
tials of teams against a given opponent k. We construct one
node for each team i, i 6= k. The desired signal xi|k at each
node i in Gk is the point differential of team i against team k.
Nodes i and j in Gk are connected by an intra-subgraph edge
s with weight ws that reflects the similarity between teams i
and j (to be discussed in details).

There are N subgraphs Gk each with N − 1 nodes—thus a
total of N(N − 1) nodes—and we can connect them together
to compose a large graph G. Specifically, since two nodes xi|k
and xi|l represent the same team i in two different subgraphs
Gk and Gl, one would expect point differentials xi|k and xi|l
to be similar, if opponents k and l are similar. We can thus

2In Spread betting, a point spread Z is established prior to a match. One
wins / loses a bet if the stronger team wins by Z points or more.

3The idea to construct N subgraphs Gk each containing N − 1 nodes—as
opposed to a simpler N -node graph—is to enable graph-signal description
of unique team matchups (i, k). A team i may be strong in general but can
perform poorly against team k due to matchup problems. Having N subgraphs
allows us to express this oddity in one graph-signal of length N(N − 1).

draw an inter-subgraph edge between these two nodes in two
subgraphs Gk and Gl, where the edge weight would reflect the
degree of similarity between opponents k and l. See Fig. 1
for an illustration, where four teams competing head-to-head
are represented by four subgraphs. Black edges are intra-
subgraph edges connecting nodes in the same subgraphs—
different teams competing against the same opponents. Red
and blue edges are inter-subgraph edges connecting nodes
across subgraphs; blue (red) edges connects nodes representing
the same team 2 (3) competing against different opponents.

C. Edge Weight

The constructed graph G is effective only if the edge weights
are properly computed to reflect the structure of the desired
signal. For an intra-subgraph edge s in subgraph Gl, we can
write weight ws|l of edge s connecting nodes e1(s) and e2(s)
using an exponential kernel [5, 6]:

ws|l = exp

{
−|distl(e1(s), e2(s))|2

σ2
w

}
(5)

where distl(i, j) computes the distance between two samples i
and j using feature functions associated with the samples, and
σw is a parameter chosen so that weight ws|l evaluates to be
near 1 if distance distl(i, j) is small, and near 0 otherwise. As
discussed in [5], feature functions that determine the sample
distance metric can be freely chosen by users; in this paper,
we use low-level statistics hi (a vector of sport-specific quan-
tities as described earlier) and a pre-filtered point differential
estimate x̂ of the two teams as our feature functions. Using the
signal estimate x̂ to determine the weighting parameters (5)
used to filter signal x is similar to the range filter in bilateral
filtering [19]. We can now write distl(i, j) as:

distl(i, j) =
∣∣x̂i|l − x̂j|l∣∣2 + γ(hi − hj)

T Ψl(hi − hj) (6)

where x̂i|l is a point differential estimate of team i against
opponent l, and Ψl is a positive semi-definite matrix, i.e.
hT Ψlh ≥ 0,∀h. For simplicity, we will only consider Ψ to
be a diagonal matrix.

For an inter-subgraph edge, because the connecting nodes
represent the same team, statistics of the opponents k and l
corresponding to the subgraphs Gk and Gl are used to compute
edge weight (5) instead.

D. Objective Function

1) Fidelity Term: Given the constructed graph G, we can
now formalize an objective function as follows. We denote by
vector x, x ∈ RN(N−1), the desired graph-signal on graph
G, where xi, i ∈ {1, . . . , N(N − 1)}, is the expected point
differential of team s against opponent t, i.e. xs|t, where:

t =

⌊
i− 1

N − 1

⌋
+ 1 (7)

s =

{
i− (t− 1)(N − 1) if i− (t− 1)(N − 1) < t
i− (t− 1)(N − 1) + 1 o.w.

For example, given there are N = 4 teams, x5 in Fig. 1 is the
point differential of team 3 against opponent 2.
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We denote by vector y, y ∈ RM , the M available observed
game differentials. yi can be the game outcome of any two
opposing teams; the same two teams can also play against each
other multiple times. Thus we define a corresponding binary
matrix D of dimension M ×N(N − 1) that matches entries
in signal x to observations y; each row in D contains a single
1 with all other entries being 0. Continuing with our previous
example, a k-th row in D with entry Dk,5 = 1 will map x5

(point differential of team 3 against opponent 2 according to
(7)) to observed yk. Our fidelity term compares reconstructed
signal x with observed y via D:

min
x
‖y −Dx‖22 (8)

By using a L2-norm for the fidelity term (8), we are
minimizing the mean squared error (MSE) with respect to
observations y. From the perspective of a Maximum A Pos-
teriori (MAP) formulation, (8) also means that the likelihood
Pr(y|x) of observation y given graph-signal x is a Gaussian
noise term with mean Dx.

2) Rewriting the Graph-Signal Smoothness Prior: Instead
of using xTLx directly as our graph-signal smoothness prior
as discussed in Section III, because we pre-define our graph
structure using available domain knowledge, we can first write
the graph Laplacian L as a weighted sum of “mini-Laplacian”
Ls:

L =
∑
s

wsLs (9)

where each mini-Laplacian Ls accounts only for one edge s
in the constructed graph structure:

Ls(i, j) =

 −1 if i 6= j and i, j ∈ {e1(s), e2(s)}
1 if i = j and i ∈ {e1(s), e2(s)}
0 o.w.

(10)

As an example, the mini-Laplacian L1 that accounts for the
first edge e1 = (1, 2) that connects nodes 1 and 2 is:

L1 =


1 −1 0 . . . 0
−1 1 0 . . . 0
0 0 0 . . . 0
...

...
...

...

 (11)

3) MAP Formulation: Similar to other inverse problems [3–
7, 10], our objective function is also a sum of fidelity term
and a graph-signal smoothness term—accounting for both
likelihood and prior in a MAP formulation. However, because
we defined our graph structure a priori, instead of optimizing
directly the graph Laplacian L that describes the (partial)
observations as done in [20], we optimize only matrices Ψl

that define weights ws in (5), which in turn compose L in (9):

min
Ψl,x
‖y −Dx‖22 + µ xTLx (12)

where µ is a parameter to trade off the fidelity term with
the signal prior, as commonly used in conventional inverse
problems [3–7, 10].

E. Discussion

Our graph-signal formulation in (12) means that the graph-
signal in question can be interpreted as samples on a smooth
continuous manifold [5, 6], and an edge weight between two
nodes is proportional to the exponential of the minus distance
between the samples. Thus nodes connected by large weights
(similar low-level statistics according to (5)) are samples of
close proximity on the same smooth manifold, and therefore
should reconstruct to similar sample values (similar point
differentials).

However, unlike [5, 6], the optimization variables are the
graph-signal x and the weights that specify the Laplacian
L of our graph structure. The reason is because there is
an intimate relationship between the graph-signal x and the
graph G: the graph must properly reflect the structure of the
signal for the graph-signal smoothness prior to hold, similarly
argued in [20]. From a manifold perspective, it means we
are reconstructing samples on the manifold and defining the
metric used to compute distance between samples, so that the
underlying manifold is smooth in the high-dimensional space.

V. OPTIMIZATION ALGORITHM

We can minimize (12) by alternately optimizing one set
of variables while keeping the other set fixed. When weight
parameters Ψl are fixed, the optimal x∗ to (12) has a closed-
form solution:

x∗ =
(
DTD− µL

)−1
y (13)

Note that we use a pre-filtered version x̂ of the desired signal
to compute the distance metric (6) used to define edge weights
ws|l via (5). For the first iteration, x̂ is a linear-regressed
solution; for subsequent iterations, x̂ is the solution computed
in the previous iteration.

When x is fixed, the first term in (12) is not affected by Ψl,
and we can compute the optimal Ψl by minimizing the second
term only. We know from (3) that xTLx can be written as a
weighted sum of neighboring node differences. The objective
becomes:

min
{Ψl}

∑
l

∑
s∈Gl

ws|l (x(e1(s))− x(e2(s)))
2 (14)

We see in (14) that each Ψl can be optimized independently.
Assuming Ψl is a diagonal matrix, and adding the following
constraints to avoid trivial solutions,

Tr(Ψi) = ∆,∀ i (15)
Ψi � 0,∀ i (16)

then the optimization for Ψi is a convex semidefinite pro-
gramming problem, which can be solved using numerical
optimization tools. To speed up the optimization process, we
remove an edge s from Gl if its initial weight ws is smaller
than a pre-defined threshold, resulting in a sparse subgraph.
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VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our graph-based data anal-
ysis framework, we predict the game outcomes for pairs of
teams who have not played against each other yet. The metric
we use for evaluation is the squared prediction error between
predicted point differential and actual point differential.

A. Data Collection

We collected publicly available NBA game statistics of the
2013-2014 season from the known website basketball-
reference4. The total number of games played is 1230,
and there are 30 teams. For a pair of teams (i, j), low-
level statistics and point differentials are computed as aver-
ages over games they have played against each other. Of-
fensive statistics include: Field Goals, 3-Point Field Goals,
Free Throws, Assists, etc. Defensive statistics include: Steals,
Blocks, Turnovers of the opposing player, etc.

B. Prediction of Point Differentials

We randomly mask 50% of the point differentials as missing
samples, then apply our model to predict missing differentials
given the available ones.

As a competing scheme, a k-nearest neighbors algorithm
(kNN) is also used to predict missing point differentials.
Similarity between two different entries is defined by the
distance of head-to-head statistics. Point differential prediction
of missing entry is further calculated by the averaging of point
differential of its most similar K entries.

(a) PD of data set (b) 50% of PD data (c) proposal at 50%

(d) kNN at 50% (e) proposal at 30% (f) kNN at 30%

Fig. 2. Missing entries prediction on NBA data set. (a) shows the ground
truth game differentials for pairs of teams. (b) shows game differentials with
50% of entries removed. (c) and (d) show the predicted game differentials for
our proposal and kNN when 50% of data are missing. (e) and (f) show the
predicted game differentials for our proposal and kNN when 30% of data are
missing.

We compare the performance of kNN with our approach.
The best average squared error of our prediction is achieved
when µ = 0.2 and ∆ = 6. The best accuracy of kNN is 242.7,

4http://www.basketball-reference.com

achieved when K = 10. Plotting indices of teams against
indices of teams, Fig. 2(a) shows the point differentials of the
ground truth data set (blue / red means negative / positive
values, and stronger color means larger magnitude). Fig. 2(b)
shows the same ground truth data set with 50% of the entries
removed. Estimations of point differentials using our model
and kNN are showed in Fig. 2(c) and 2(d) respectively. By
comparing the colors between our prediction in Fig. 2(c) and
original data in Fig. 2(a), we observe that our model is better
at predicting point differentials in the missing data than kNN.

We also randomly mask 30% of the point differentials as
missing samples, and then apply our method and kNN for
prediction. The best average square error of our prediction is
99.9, while the best average square error of kNN is 136.1.
Estimations of point differentials using our model and kNN
are showed in Fig. 2(e) and 2(f) respectively. We observe that
while both schemes have better predictions when the amount
of missing samples is smaller, our proposal recovers distinct
patterns in the signal (e.g. the red portion in the lower-left
quadrant) much better than kNN.

C. Denoising

We next evaluate the effectiveness of our framework on
denoising of noise-corrupted data. We corrupt game outcome
with additive Gaussian noise and apply our framework on
the noisy data. The standard deviation of Gaussian noise is
set to half of that of actual game differentials. Here we use
identity matrix for D, and regard x from (12) as the denoised
result. Noise-corrupted data, and our denoised data are shown
in Fig. 3.

We can observe from Fig. 3 that our denoised result re-
sembles the original data remarkably. The structure of the
data (short transitions in color) is recovered to a very large
extent, demonstrating the effectiveness of our framework in
data denoising. Numerically, our scheme can reduce noise to
0.270 in MSE, while kNN can achieve 0.456.

VII. CONCLUSION

We propose to analyse head-to-head sports statistics from
a graph signal processing (GSP) perspective. GSP tools are
used for both denoising variability in the observations, and for
interpolating missing signal samples—pairs of teams who have
not competed together before. In particular, we first construct
an appropriate graph for our desired signal (point differentials
for every team pair). Assuming a graph-signal smoothness
prior, we compute the desired signal on the constructed graph
via an alternating convex programming procedure. Experimen-
tal results show that our graph-based scheme achieves better
predictions than a competing k-nearest neighbor scheme.
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