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Abstract—HEVC (High Efficiency Video Coding) 
achieves cutting edge encoding efficiency and outperforms 

previous standards, such as the H.264/AVC. One of the 

key contributions to the improvement is the intra-frame 

coding that employs abundant coding unit (CU) sizes. 

However finding the optimal CU  size is computationally 

expensive. To alleviate the intra encoding complexity and 

facilitate the real-time implementation, we use a machine 

learning technique: the random forests, for training. 

Based on off-line training, we propose using the forest 

classifier to skip or terminate the current CU depth level. 

In addition, neighboring CU size decisions are utilized to 

determine the current depth range. Experimental results 

show that our proposed algorithm can achieve 48.31% 

time reduction, with 0.80% increase in the Bjøntegaard 

delta bitrate (BD-rate), which are state-of-the-art results 

compared with all algorithms in the literature. 

I. INTRODUCTION 

    In 2013, the Joint Collaborative Team on Video Coding 

(JCT-VC) has come up with a milestone of video 

compression standard, known as High Efficiency Video 

Coding (HEVC) [1], which is an evolved version of H.264 [2]. 

HEVC outperforms H.264 by increasing the compression rate 

by about 50% and obtaining a high encoding efficiency for 

resolution beyond High Definition (HD) videos, such as the 

latest 4K and 8K formats videos[3][4]. Compared with H.264, 

HEVC has two main enhancements in encoder, i) nested 

quad-tree structures with coding unit (CU), prediction unit 

(PU), and transform unit (TU) [5] and ii) numerous prediction 

modes [4]. 

    One of the considerable areas in HEVC is intra coding, for 

which blocks of pixels are coded only with references to the 

current frame. It exploits the spatial correlation on blocks with 

35 prediction modes and CU sizes varying from block size 

64x64 down to 8x8 [6].  These new features affect the 

complexity extremely, making it difficult for real-time 

implementation, especially for HD or Ultra HD videos that 

have high resolutions. 

    The fact motivates researches on early decision of CU size 

to reduce the coding complexity and achieve a fast encoding 

speed. Authors in [7] proposed an online updated statistical 

parameter to set the threshold for early decision on CU size 

splitting and pruning. In [8], texture measurements on each 

CU block are utilized to bypass and terminate CU size 

decision. Edge complexity in several directions are used to 

decide the partitioning of a CU in [10]. However, most of 

these existing algorithms mainly apply conventional content-

based or statistic-based methods. Limited number of papers in 

the literature consider to used learning-based algorithms, 

which is currently a hotspot and widely applied in recognition, 

classification and signal processing. One of the latest 

literature that uses learning-based method on CU size decision 

in intra frame prediction is [9], where data mining classifiers 

are used. But the time saving ratio might be far from the state-

of-the-art results and the testing sequences used in the paper 

appear incomplete for a full evaluation. Many papers in 

literature that explore fast intra coding algorithms via 

prediction mode selection [11][12], which is also a hot topic 

for intra prediction research, while solely applying fast 

prediction mode selection usually cannot give an effective 

complexity reduction in HEVC. 

    In this paper, we propose an efficient machine learning 

algorithm based on fast CU depth decision, where we mainly 

apply random forests for the learning. For the rest of this 

paper, we will give a brief introduction of HEVC intra-frame 

prediction in section II, mainly focusing on CU size decision. 

Section III covers the details of our proposed algorithm, 

which includes CU range decision and the fast split or non-

split strategy. In section IV, we will show and compare 

experimental results. Finally, the conclusion and references 

are provided. 

II. INTRA PREDICTION IN HEVC 

    Intra prediction is a block-based prediction. Compared with 

the H.264 standard where three block sizes with four (for 

16x16 block size) and nine (for 8x8 and 4x4 block size) 

prediction modes are available to predict a block within the 

current frame [1], the HEVC not only enlarges the block sizes 

to 64x64, 32x32, 16x16, 8x8 and 4x4, but also increases the 

set of prediction modes to 35 [2]. 

HEVC starts the prediction from a Coding Tree Unit (CTU) 

whose size is 64x64. It will then be further split into four 

32x32 CUs, each of the four sub-CUs can also be split 

iteratively into a smaller quad-tree-based structure [6]. Figure 

1 gives an example of the CTU size decision on both the tree 

structure and corresponding block partitions. Depth 0 refers to 

the block size 64x64. And the number 0 and 1 represent the 
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non-split and split decision. If the cost of prediction on the 

four 32x32 blocks is lower than the cost of predicting 64x64 

block, the depth level will be increased by one and goes into 

the analysis of each 32x32 blocks. Similarly, a 32x32 CU will 

be compared with its four 16x16 sub-CUs. When it comes to 

8x8 CU, it may be divided into PUs with size of 4x4. Finally, 

the partitioning ends until the minimum cost in each level is 

found. 

 

 
Fig. 1 An example of CU partitions 

     

    In each CU, 35 prediction modes, including 2 modes for 

smooth texture prediction and 33 angular prediction modes, 

are compared by Rough Mode Decision (RMD) [13][14][15] 

and Rate Distortion Optimization (RDO) [6]. Then the 

optimum mode with the lowest cost is obtained. 

    Due to numerous amount of possibilities to be evaluated, 

HEVC is time-consuming. This fact evokes our approach to 

realize an early CU size decision without going through the 

tree structure.  

III. OUR PROPOSED FAST CU DECISION 

A. CU Depth Range Decision 

    In a natural scene, neighboring blocks have a strong 

correlation with the current CU. It is known that the intra-

frame coding makes use of the encoded above, left, left-above 

and right-above CUs as shown in Figure 2 to reduce 

computational burden in the current CU.  

 

 
Fig.2 Current CU and its Neighbor Depth Decision 

 

These neighboring CUs usually have similar contents, but 

HEVC yet has no good methods to aid the current CU size 

decision by utilizing its neighbors. We can make use of the 

spatial correlation of them, and predict a depth level as below. 

                           
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where Depthi is the depth level of the neighboring CUs, 

ranging from 0 to 3. M is the number of neighboring blocks, 

and we have M=4, including the left CU, left-above CU, 

above CU and right-above CU. wi is the weighting factor 

determined by the correlation between the current CU and 

each neighboring CU. The sum of these four weights is 

normalized to 1. Due to a stronger correlation, we assign wi 

=0.3 for the left CU and above CU. For the left-above CU and 

right-above CU which have weaker correlation with the 

current CU, we let wi =0.2. This arrangement is for the sake of 

simplicity. 

After obtaining the Depthpred the current CU depth range is 

assigned as below. 

 
 

    When the predicted depth is smaller than 1, it means the 

neighboring blocks are flat and homogeneous. The current 

depth range can be set from 0 to 2, where the smallest CU size 

for prediction is limited to 16x16 (depth 2). When the 

predicted level is larger than 2, this reveals that the 

neighboring CUs are complex and inhomogeneous. We will 

set the prediction range from 1 to 3, which means the current 

CU prediction starts from block size 32x32 (depth 1), and 

searches towards 8x8 (depth 3). For the rest cases of the 

predicted depth, the prediction range remains unchanged, 

which is the same as the default HEVC settings. 

    This approach is similar to reference [8] and [16], except 

that [8] is limited to bypass the current block size when the 

current depth level is smaller than the predicted depth minus 

one. And [16] defines the depth range by considering the 

ranges of the left and above CU only. 

B. Early CU Termination and Bypass Decision by Random 

Forests 

    In this section, we introduce the core of our proposed 

algorithm. First, our forest design is given with a brief 

introduction of decision tree and random forests. Then a split 

algorithm is introduced for the optimum split decision. Lastly, 

we will provide detailed strategies for the training, and the 

evaluations of the training results. 

1) Forest Design 

    The approach random forests [17]-[20], T={Tt}, is a 

combination of a set of decision trees {Tt}  which jointly 

realize classification. Each tree has three types of nodes: 

 A root node that has no incoming edges with zero or 

more outgoing edges. 

 Internal nodes, each of which has exactly one incoming 

edge and two or more outgoing edges. 

 Leaf or Terminal nodes, each of which has exactly one 

incoming edge and no outgoing edges. 

    The prediction starts with the root node. For each non-leaf 

node, which includes the root and internal nodes, the 

procedure allows an incoming image block to go to the left or 

to the right based on the value of a certain variable whose 

index is stored in the current node. The tree is built 

recursively, at each node the recursive procedure may stop 

when: 

(2) 
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 Depth of the tree branch has reached the maximum 

defined value. 

 Number of training samples is less than a specified 

threshold when further split is not statistically 

representative. 

 All the samples belong to the same class. 

    In our designed forests, all the trees are trained with 

different training sets but with the same set of parameters. 

These sets are generated from the original training set using 

the bootstrap procedure. We totally uses 10 trees, where each 

of them has a maximum depths of 25. We apply the luma 

pixel intensity in each block as the input feature vector, and 

the output classification is “0” for “non-split” decision and 

“1” for “split” decision. As shown in Figure 3, the 

classification works as below: each random tree classifier 

takes the input image block, classify it by going through the 

decision tree, and outputs the class label “1” or “0” for each 

tree. The final decision is made at the classification result that 

received the majority of “votes” from all the 10 outputs. 

 

 
Fig. 3 Random forest with a set of decision trees. 

 

2) Split Algorithm 

    In the training of each non-leaf node, a set of thresholds is 

tested. If the pixel value is less than the threshold, the image 

block goes to the left, otherwise it goes to the right. The 

optimum threshold can be obtained by many measures. In our 

experiments, we use the Gini impurity criterion [19] 

                             
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where c is the number of classes (here we have c=2), p(i|t) 

denotes the ratio of data belonging to class i at the node t. If 

the Gini impurity is lower, the classification performance is 

better. Then, by going through all possible thresholds, the 

optimum one is obtained with the lowest Gini impurity. For 

example, there are two thresholds Th1, Th2 need to be tested. 

Threshold Th1 results in 10 training samples going to the left 

node, where 8 of them are classified as “0”, and the rest 2 of 

them are classified as “1”. The Gini impurity for Th1 is 

                     32.0)
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    Threshold Th2 results in 20 training samples going to the 

left node, where 10 of them are classified as “0”, the other 10 

samples are classified as “1”. The Gini impurity for Th2 is 

                         50.0)
20
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    Since GiniTh1 < GiniTh2, Threshold Th1 is then selected as 

the optimum threshold for the split. 

3) Training Scheme and Evaluation 

    Feature selection aims to select attributes that can realize a 

high classification performance. In our proposed method, we 

take the luma pixel intensity as the input attributes for the CU 

size 64x64 and 32x32 determination. The classification result 

is set to “0” which means to stay in the current depth without 

any further split and “1” as to skip the current CU depth and 

start the prediction from one depth higher. As for a block 

belongs to “0”, it has a homogenous texture or a smooth grain 

that follows a certain direction. In this way, the block can be 

easily predicted as one of the 35 prediction modes and results 

in tiny residual and RD cost. On the other hand, for the block 

belongs to “1”, it owns a varied texture and further split is 

required. The detailed parameters for our training is as below. 

 
    The number of training samples is set to the extent of a 

high prediction accuracy without overfitting. The number of 

attributes per sample, which means the number of input 

feature vectors per sample, is 4096 for image block size 

64x64 and 1024 for image block size 32x32. Then the 

classification decision is assigned as the last number in a 

sample, where “0” is for non-split decision and “1” for split 

decision. The maximum depth of a decision tree is set to 25, 

which is obtained by experiments from setting the maximum 

depth as 5, 10, 15, 20... The minimum number of training 

samples for further split is set to 5. And the number of 

variables randomly selected at node and used to find the best 

split is 64 for block size 64x64, and 32 for block size 32x32, 

which is useful to explore some texture characteristics. 

Finally, we set 10 as the number of trees in the forest. 

    Considering the optimal partitioning obtained based on 

pixel variation in the intra-frame prediction has strong 

dependency with the scene and the QP value, we trained the 

classifier sequence by sequence with four QP values: 22, 27, 

32, and 37 as defined in JCT-VC [21]. The ground truth 

classification is obtained by encoding the HEVC testing 

model HM10.0 [22]. Table II and Table III show part of our 

results about the prediction accuracy on the first 200 frames is 

of Class B sequences. From the tables above, we can find that 

TABLE   I 

TRAINING PARAMETER SETTINGS FOR BLOCK DEPTH 0 AND 1 

Parameters Numbers 

Number of training samples 2400 for block depth 0 

7600 for block depth 1 

Attributes per sample (block 

size) 
4096 (=64x64) for block depth 0 

Number of Classification  2 (“0 for non-split”, “1” for 

split) 

Max depth 25 

Minimum number of training 

sample for further split 
5 

Number of variable randomly 

selected at node and used to find 

the best splits 

64 for block depth 0 

32 for block depth 1 

Number of trees in the forest 10 
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this method achieves a high prediction accuracy, where most 

of the results can reach an accuracy of over 90%. The results 

can guarantee a fast and efficient depth decisions. For the 

blocks with wrong classification, there might be some 

degradation in PSNR and increase in BD-rate. But even the 

size of CU is wrongly predicted, for example, the ground truth 

is to stay at depth 0. Our decision stops at depth 2 as shown in 

Figure 4. The quality may not be affected severely because 

further split can also achieve an accurate prediction. With the 

low wrong prediction rate, the degradation of picture quality 

should be low. 

 
 

 
Fig.4 Comparison on CU Size Decision.  

(Left: ground truth CU size encoded by HM10.0.  Right: predictions of our 
algorithm, all matching well, except the CU encoded in red.) 

C. Flowchart of our Proposed Algorithm 

    Figure 5 sums up our proposed algorithms as illustrated in 

section III.A and III.B. When CU encoding starts, the depth 

range decision will firstly be found by making use of 

neighboring blocks. Then, if the depth level of the current CU 

is 0 or 1, we use random forests classifiers to decide whether 

the prediction should be bypassed or stayed on the current 

depth level. For the rest of CU depths (level 2 and 3), 

conventional HEVC intra prediction methods will be used. 

IV. EXPERIMENTAL RESULT 

    The proposed fast algorithm is implemented on the HEVC 

reference software HM10.0 reference software [22], and was 

run on a platform with Intel® CoreTM i7-4790 CPU 16.0GB 

RAM size. According to the common test conditions and 

reference configurations recommended by JCT-VC [21], five 

groups of testing sequences were carried out to evaluate the 

coding performance and computational complexity under the  

 
Fig.5 Flowchat of the proposed algorithm 

 

configuration of All-Intra Mode and Main profile (AI-Main). 

Four QP values (QP 22, QP 27, QP 32, and QP 37) were used 

to encode all the frames in the test sequences. For each QP of 

a sequence, we off-line trained two forests in advance, which 

follows our methodology introduced in section 3.2.2. The 

Bjøntegaard delta rate distortion (BD-rate) performance is 

measured by BD-rate Model [23] [24]. The average time ratio 

(ATR) and average time saving (ATS) are given by: 
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where n is the total number of sequences, Enc.Timeproposed,i is 

the encoding time of our proposed algorithm on sequence i, 

and Enc.TimeHM10.0,i is the corresponding encoding time of 

HM10.0. 

Table IV summarizes the performance of the overall 

proposed algorithm. As shown in the tables, the proposed 

algorithm efficiently reduces the computational complexity in 

terms of encoding time, with slight increase in BD-rate. 

Table V gives the comparisons of the proposed algorithm 

with some representative methods in the literature. For a clear 

view of the comparison in graph, we use ATR to reveal the 

complexity reduction on encoding time. As shown in Figure 6, 

the smaller value in X axis, which means the lower ATR, the 

more time is saved to encode. And the smaller value in Y axis, 

which reveals the lower BD-rate, the less additional bits are 

used to encode. Therefore, the nearer to the left-down corner 

in the graph, the better is the performance of the algorithm. 

Our proposed algorithm has a good performance and is 

comparable to [7] which is the state-of-the-art result.   

Furthermore, our proposed algorithm outperforms [8] in both 

BD-rate and time ratio, where [8] also has a good result.  In 

addition, [9] is one of very few algorithms that uses machine 

learning technique. Although its BD-rate is a little bit lower 

than our result, our complexity gains a 20% reduction. 

Compared with [25] and [26], our result also has advantages 

in both BD-rate and time saving. 

TABLE   II 

PREDICTION ACCURACY OF CU DEPTH 0 OF CLASS B 
CU Depth 0 Prediction Accuracy 

QP 

 

Average 

Training 

Time (s) 

 

Testing Sequence 

Basketball BQTerrace Cactus Kimono Park 

Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

22 13.46 99.40 96.80 99.60 99.80 98.10 

27 14.30 94.70 97.40 98.70 95.30 97.60 

32 15.79 90.10 98.30 97.20 97.00 98.30 

37 18.66 89.30 99.40 98.30 98.30 97.40 

 
TABLE   III 

PREDICTION ACCURACY OF CU DEPTH 1 OF CLASS B 
CU Depth 0 Prediction Accuracy 

QP 

 

Average 

Training 

Time (s) 

 

Testing Sequence 

Basketball BQTerrace Cactus Kimono Park 

Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

22 15.22 90.90 97.20 93.80 97.10 90.80 

27 18.01 90.60 96.40 95.20 97.20 93.80 

32 20.08 91.10 95.20 96.20 98.10 93.50 

37 21.19 86.60 89.70 97.50 97.50 94.80 

 

 

 

(6) 

(7) 
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Fig. 6 Performance comparison with existing methods 

V. CONCLUSION 

In this paper, a fast CU depth decision of intra-frame 

coding based on a machine learning technique is proposed. To 

begin with, we have used a weighting sum approach for 

partition decision. This is achieved by using neighboring CUs 

as a reference to set the CU size range for the current CU. 

Then, we introduce random forests to make a prediction on 

selecting CU size 64x64 or 32x32. Before encoding, we input 

all the pixels in the image block in our random forests scheme 

and output the decision on whether the process stays in the 

current depth for prediction or directly skips the current CU 

size and starts the prediction for the higher depth. This is the 

core strategy of our algorithm which greatly reduces the 

computational complexity. Experimental result shows that we 

can achieve the state-of-the-art result, with 0.80% BD-rate 

increase and 48.31% time saving. 
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