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Abstract—Hybrid steepest descent method is an algorithmic so-
lution to certain hierarchical convex optimization which is a class
of two-stage optimization problems: the first stage problem is a
convex optimization; the second stage problem is the minimization
of a differentiable convex function over the solution set of the
first stage problem. In the application of this method, the solution
set of the first stage problem must be expressed as the fixed point
set of a certain nonexpansive operator.

In this paper, we propose a nonexpansive operator that yields a
computationally efficient update in cases where it is plugged into
the hybrid steepest descent method. The proposed operator is
applicable to characterize the solution set of recent sophisticated
convex optimization problems, where multiple proximable convex
functions involving linear operators must be minimized. To the
best of our knowledge, for such a problem, there was not reported
any nonexpansive operator that yields an update free from the
inversions of linear operators in cases where it is utilized in the
hybrid steepest descent method. Unlike conventional operators,
the proposed operator yields an inversion-free update.

I. INTRODUCTION

Convex optimization [1], [2], [3] is known as a powerful
formalism for diverse application fields. It has significant
flexibility to offer desired properties on its solutions by de-
signing the objective function to be minimized (see e.g. [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18]). In this context, fixed point characterizations of
solutions by an operator provide a unified view for many
iterative algorithms for convex optimization [19]. In particular,
nonexpansive operators are preferred for characterizing all
the solutions because many algorithms for finding a solution
can be explained as iterative use of a nonexpansive operator
(see e.g. [20], [21], [22], [23], [24], [25], [26] for such
instances). On the other hand, the aforementioned iterative use
of the nonexpansive operator is limited to approximate a single
unspecial solution to the corresponding convex optimization
problem though it has in general infinitely many solutions that
could be considerably different in terms of another criterion.

For pursuing a better solution in some other aspects, hierar-
chical convex optimization [27] has been introduced to specify
rigorously the optimums in the infinitely many solutions. The
hierarchical convex optimization is a two-stage optimization
problem in a Hilbert space: the first stage problem is a convex
optimization problem in the Hilbert space; the second stage
problem is the minimization of a convex function over the
solution set of the first stage problem. In [27], an algorithmic
solution to the hierarchical convex optimization was presented
based on the hybrid steepest descent method (see for related

results [19], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40]). For an iterative algorithm for the first
stage problem, the hybrid steepest descent method simply
concatenates an additional gradient descent step of the second
stage criterion. The hybrid steepest descent method has broad
applicability because its convergence is guaranteed essentially
under only two requirements: the second stage criterion is
smooth and the iterative algorithm for the first stage problem
can be explained as the iterative use of a nonexpansive operator
defined over the Hilbert space.

Meanwhile, the computational burden on each iteration of
the hybrid steepest descent method remains controversial if the
criterion of the first stage problem involves the composition of
a non-smooth convex function and a linear operator. Recently,
in [40], it has been investigated that plugging the computation-
ally efficient nonexpansive operator found implicitly in the
Condat’s primal-dual splitting [26] into the hybrid steepest
descent method results in the (possibly computationally inten-
sive) inversion of a linear operator due to employment of a
non-standard inner product space. Consequently, in the case
where the first stage criterion involves such a composition,
there has not been reported any nonexpansive operator that
yields an inversion-free update in the hybrid steepest descent
method.

In this paper, we present a way to avoid inversions of
linear operators in the iterations of the hybrid steepest descent
method even if the first stage criterion involves the compo-
sition of a nonsmooth convex function and a linear operator.
First, we propose an inversion-free nonexpansive operator to
characterize the solution set of the first stage problem. To
avoid inversions of linear operators, we reformulate the first
stage problem into an equivalent problem in a product space.
Accordingly, the proposed operator is defined in a product
of Hilbert spaces equipped with the standard inner product.
Second, we propose an algorithmic solution to certain hierar-
chical convex optimization problems by plugging the proposed
operator into the hybrid steepest descent method. For a given
hierarchical convex optimization problem in a Hilbert space,
the proposed operator for the first stage problem is defined in
a certain product space. To fill this gap for application of the
hybrid steepest descent method, we present a translation of the
hierarchical convex optimization problem into an equivalent
problem in the product space. Preserving some preferable
properties on the original second stage criterion, we design
carefully a regularization term for the second stage criterion
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in the product space to satisfy conditions offered by previous
convergence results on the hybrid steepest descent method.
Consequently, we succeed in avoiding the inversions of linear
operators in the update of the hybrid steepest descent method
if the first stage criterion involves a single composition.
Notation: Let X be a real Hilbert space equipped with1 an
inner product ⟨·, ·⟩ and its induced norm ∥ · ∥ =

√
⟨·, ·⟩,

which is denoted by (X , ⟨·, ·⟩, ∥ · ∥). Let (K, ⟨·, ·⟩K, ∥ · ∥K)
be another real Hilbert space. Let A : X → K be a bounded
linear operator of which the norm is defined by ∥A∥op :=

supx∈X\{0}
∥Ax∥K
∥x∥ . Then, the operator A∗ : K → X denotes

its adjoint, i.e.,

(∀(x, u) ∈ X ×K) ⟨x,A∗u⟩ = ⟨Ax, u⟩K.

Let Γ0(X ) be the set of all proper lower-semicontinuous
convex functions defined over the real Hilbert space X .

Other mathematical preliminaries are presented in Appendix
for readability.

II. HYBRID STEEPEST DESCENT METHOD

Consider the problem

find x⋆ ∈ argmin
x∈Fix(T )

ψ(x) =: Ω ̸= ∅, (1)

where ψ : X → R is differentiable and T : X → X is a
nonexpansive operator (see (29)) with Fix(T ) := {x ∈ X |
Tx = x} ̸= ∅. For problem (1), the hybrid steepest descent
method

xk+1 = T (xk)− λk+1∇ψ(T (xk)) (2)

is an algorithmic solution, i.e., the sequence (xk)k∈N generated
by (2) converges strongly2 to a solution of problem (1).

Fact 1. [28, special case of Theorems 3.2 and 3.3] Let
T : X → X be a nonexpansive operator. Suppose that
ψ : X → R be a differentiable convex function and ∇ψ is κ-
Lipschitzian and η-strongly monotone over T (X ) := {T (x) ∈
X | x ∈ X}. Then, with any x0, the sequence (xk)k≥0

generated by (2) converges strongly to the uniquely existing
solution of problem (1), if the sequence (λk)k≥1 ⊂ [0, 1]
satisfying one of the following two condition tuples:

(L1) lim
k→∞

λk = 0,

(L2)
∑
k≥1

λk = ∞,

(L3) lim
k→∞

(λk − λk+1)λ
−2
k+1 = 0;

1Often ⟨·, ·⟩X denotes ⟨·, ·⟩ to explicitly describe its domain.
2(Strong and weak convergences) A sequence (xk)k∈N ⊂ X is said to

converge strongly to a point x ∈ X if the real number sequence (∥xk −
x∥)k∈N converges to 0, and to converge weakly to x ∈ X if for every y ∈ X
the real number sequence (⟨xk − x, y⟩)k∈N converges to 0. If (xk)k∈N
converges strongly to x, then (xk)k∈N converges weakly to x. The converse
is true if X is finite dimensional, hence in finite dimensional case we do not
need to distinguish these convergences.

or

(W1) lim
k→∞

λk = 0,

(W2)
∑
k≥1

λk = ∞,

(W3) lim
k→∞

|λk − λk+1| = 0.

Fact 1 can be applied to a certain class of hierarchical
convex optimization. Suppose that a nonexpansive operator
T : X → X characterizes, as its fixed point set, the solution
set of the minimization of a function φ ∈ Γ0(X ), i.e.,

Fix(T ) = argmin
x∈X

φ(x). (3)

In this case, Fact 1 leads to an algorithmic solution to the
hierarchical convex optimization problem

minimize
x⋆∈X

ψ(x⋆) s.t. x⋆ ∈ argmin
x∈X

φ(x) ̸= ∅.

In other words, constructing a nonexpansive operator which
characterizes the solution set of the first stage problem,
i.e., argmin

x∈X
φ(x), is a key to solve hierarchical convex op-

timization problems. Obviously, a computationally efficient
operator is desired because its computation dominates the
whole computational cost of the iteration (2). For example, the
proximity operator of φ satisfies (3) (see (33)). Its computation
is efficient if the function φ is proximable3. Meanwhile, since
φ is not necessarily proximable, designs of computationally
efficient nonexpansive operators are required in general.

III. PROPOSED METHOD

We present a nonexpansive operator to characterize the
solution set of the convex optimization problem

find x⋆ ∈ argmin
x∈X

(f(x) + g(Ax)) =: S1(̸= ∅) (4)

of which the criterion involves a single composition, where
f ∈ Γ0(X ) and g ∈ Γ0(K), and A : X → K is a bounded
linear operator. Now let us introduce a real Hilbert space X×K
equipped with the inner product ⟨·, ·⟩X×K := ⟨·, ·⟩X + ⟨·, ·⟩K.
Then by defining F ∈ Γ0(X ×K) as F : X ×K → (−∞,∞] :
(x, y) 7→ f(x)+g(y), the problem in (4) can be translated into

find (x⋆, y⋆) ∈ argmin
z=(x,y)∈X×K

(F (z) + ι{0}(Az)) (5)

= {(x⋆, Ax⋆) ∈ X ×K | x⋆ ∈ S1}
=: Z1(̸= ∅), (6)

where a bounded linear operator A : X ×K → K is assumed
to satisfy

Az = 0 ⇔ Ax = y. (7)

3In this paper, f ∈ Γ0(X ) is said to be proximable if the proximity operator
proxf (see (32)) is available as a computable operator. Note that the sum of
two proximable convex functions is not necessarily proximable. Moreover,
for a bounded linear operator A : X → K, the composition g ◦ A ∈ Γ0(H)
of a proximable function g ∈ Γ0(K) is also not necessarily proximable.
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For the problem in (5), we introduce an operator T : H → H :
(z, ν) 7→ (zT , νT ) with{

zT = proxF (z −A∗Az +A∗ν)
νT = ν −AzT

(8)

defined over a real Hilbert space H := X ×K ×K equipped
with the inner product ⟨·, ·⟩H := ⟨·, ·⟩X + ⟨·, ·⟩K + ⟨·, ·⟩K.
Then its fixed point set characterizes Z1 over H, and its
nonexpansivity is guaranteed as follows.

Theorem 1. (a) A qualification condition4

0 ∈ sri(A dom(F )) (9)

for the problem in (5) implies

Fix(T ) = Z1 ×Z∗
1 ,

where

Z∗
1 := argmin

ν∈K

(
F ∗(A∗ν) + ι∗{0}(−ν)

)
= argmin

ν∈K
F ∗(A∗ν)

is the solution set of the dual problem of (5).
(b) The operator T is nonexpansive if5 ∥A∥op ≤ 1, i.e.,

∥Az∥K ≤ ∥z∥X×K (∀z ∈ X ×K). (10)

Remark 1: The operator T in Theorem 1 can be computed
efficiently if f ∈ Γ0(X ) and g ∈ Γ0(K) are proximable
implying thus F is also proximable due to

(∀(x, y) ∈ X ×K) proxF (x, y) = (proxf (x), proxg(y)).

Note that inversions involving A are not necessary for com-
putation of T .
Remark 2: A simply designed linear operator

A : X ×K → K : (x, y) 7→ Ax− y (11)

satisfies the condition (7). In this case, the qualification
condition (9) for the problem in (5) is equivalent to that of
the problem in (4), i.e.,

(9) ⇔ 0 ∈ sri(dom(g)−A dom(f)).

Remark 3: The proposed operator relates to the linearized
augmented Lagrangian method (LALM) [15], [18]. In fact, an
iterative use of T

(zk+1, νk+1) = T (zk, νk)

reproduces the iteration of the LALM for the problem in (5)
(see [18] for its convergence in a finite dimensional space).
Meanwhile, since Theorem 1 guarantees the nonexpansivity
of T , the Krasnosel’skiı̆-Mann (KM) iteration in Fact 7
specialized for T results in algorithmic solutions to finding
a point in Fix(T ).

4This condition holds true in most of practical situations.
5Without loss of generality, we can assume that the condition (10) holds

true because the conditions (7) and (9) are invariant for scaling factor, i.e.,
(7) and (9) imply that

αAz = 0 ⇔ Ax = y,

0 ∈ sri(αAdom(F ))

hold true for any α ̸= 0.

Remark 4: Applicability of the proposed operator can be
significantly extended by incorporating Pierra’s idea [41],
[42]. Roughly speaking, by introducing a product space, the
sum of compositions of proximable convex functions and linear
operators can be reduced to a single composition. Hence
convex optimization problems whose criteria involve the sum
of the compositions can be reduced to special cases of prob-
lem (4). Therefore, the proposed operator can be utilized to
characterize the solution set of convex optimization problems
even if their criteria involve the sum of the compositions.

We shall plug T into Fact 1 to propose an algorithmic
solution to certain hierarchical convex optimization problems.
Consider

find x⋆⋆ ∈ argmin
x∈S1

ψ(x) =: S2, (12)

where we suppose that ψ : X → R is a differentiable convex
function and ∇ψ is κ-Lipschitzian and η-strongly monotone.
Note that there has not yet been reported any algorithmic
solution which does not require inversion of linear operators
(see Sec. IV for detail). Theorem 1 leads to an equivalent
problem of (12) in the product space H

find (z⋆⋆, ν⋆⋆) ∈ argmin
(z,ν)∈Fix(T )

Ψ(z, ν), (13)

where
Ψ: H → R : (x, y, ν) 7→ ψ(x). (14)

Hence solving (13) results in a solution of the hierarchical
problem (12). Fortunately, problem (13) is a special case of
(1), so that Fact 1 presents its algorithmic solution if the
criterion of the second stage problem has the strongly mono-
tone gradient. Although Ψ in (14) violates this condition6,
a carefully designed regularizer defines the new function Υ
whose gradient ∇Υ is strongly monotone and translates S2

into the solution set of problem (15) below.

Theorem 2. Consider

minimize(z,ν)∈Fix(T ) Υ(z, ν), (15)

where Υ: H → R : (z, ν) 7→ Ψ(z, ν) + ηz

2 ∥Az∥2K + ην

2 ∥ν∥2K
with user-defined positive constants ηz, ην > 0.
Then (a) the solution set of problem (15) is

{(x⋆⋆, Ax⋆⋆) | x⋆⋆ ∈ S2} × {PZ∗
1
(0)}

under the qualification condition (9) for the problem in (5).
(b) ∇Υ can be expressed as

∇Υ(z, ν) =

(
G(z)
0

)
+

(
ηzA∗A O
O ηνI

)(
z
ν

)
,

where

G : X ×K → X ×K : z = (x, y) 7→ (∇ψ(x), 0).

(c) ∇Υ is strongly monotone if ∇ψ is η-strongly monotone
and there exists constant ηZ > 0 s.t.

(∀z = (x, y) ∈ X ×K) η∥x∥2X + ηz∥Az∥2K ≥ ηZ∥z∥2X×K. (16)

6Since for any (x, y1, ν1), (x, y2, ν2) ∈ H : (y1, ν1) ̸= (y2, ν2) we have
Ψ(x, y1, ν1)−∇Ψ(x, y2, ν2) = 0, ∇Ψ is not strongly monotone.
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For example, if A is defined as in (11),

ηZ = min

{
η

2
,

(
ηηz∥A∥−2

op

2 + ηηz∥A∥−2
op

)
ηz

}
> 0

satisfies (16).
(d) Let Tτ := (1− τ)I+ τT with τ ∈ (0, 1]. Assume that ∇Υ
is strongly monotone over Tτ (H), the qualification condition
(9) for the problem in (5), and the condition (10) hold true.
Then, for any (z0, ν0) ∈ H, the sequence generated by

(zk+1, νk+1) = Tτ (zk, νk)− λk+1∇Υ(Tτ (zk, νk)) (17)

converges strongly to the unique solution of problem (15) if
the conditions on (λk)k≥1 in Fact 1(I) are satisfied. Therefore
(17) is an algorithmic solution to problem (12) too and does
not require inversions of linear operators.

IV. DISCUSSIONS

We clarify practical advantage of the proposed operator
T over other nonexpansive operators found implicitly in
related algorithms. Here, we consider three iterative algorithms
applicable to the first stage problem (4): the Alternating
Direction Method of Multipliers (ADMM) [22], [23], [25],
the Augmented Lagrangian Method (ALM) (essentially date
back to [20], [21] and a recent paper [25]), and the Condat’s
primal-dual splitting algorithm [26]. We shall find that the
nonexpansive operators found in the first two algorithms
cannot be plugged directly into Fact 1 and the operator in
the last algorithm leads possibly to an intensive computation
in the exact evaluation of the gradient of the second stage
criterion in the use in Fact 1.

A. Alternating Direction Method of Multipliers (ADMM)

The ADMM
xk+1 ∈ argmin

x∈X

(
f(x) + 1

2∥Ax− yk − νk∥2K
)

yk+1 = argmin
y∈K

(
g(y) + 1

2∥Axk+1 − y − νk∥2K
)

νk+1 = νk −Axk+1 + yk+1

(18)

is an algorithmic solution to problem (4). It is well-known
that, under a mild condition, the ADMM can be interpreted as
an iterative use of a nonexpansive operator consisting of two
proximity operators, whose fixed point set characterizes the
solution set of the dual problem of (4) (see [23], [24], [25]).

Fact 2. Consider a dual problem of (4), i.e.,

minimize
ν∈K

f∗(A∗ν) + g∗(−ν).

Under a qualification condition

0 ∈ sri(dom(g)−Adom(f))

for (4) and

0 ∈ sri(dom(f∗)− ran(A∗)),

the iterative process

υk+1 =

[
I + rproxθ1 ◦ rproxθ2

2

]
υk

νk+1 = proxθ2(υk+1)

reproduces the update of the ADMM, where θ1 := f∗◦A∗ and
θ2 := g∗ ◦ (−I), by letting (xk)k∈N ⊂ X and (yk)k∈N ⊂ K
such that{

xk+1 ∈ ∂f∗(A∗(υk+1 − υk + νk))
Axk+1 = νk − υk+1

yk+1 = νk+1 − υk+1.

Fact 7 guarantees that (υk)k∈N converges weakly to a point
in Fix(rproxθ1rproxθ2). In addition,

argmin
ν∈K

f∗(A∗ν)+g∗(−ν) = proxθ2
(
Fix

(
rproxθ1rproxθ2

))
.

However, the fixed point characterization of S1 through
Fix(rproxθ1rproxθ2) is hardly applicable to Fact 1 to solve
the hierarchical optimization problem (12). Under the same
conditions as in Fact 2, Fact 5 and Fact 6 ensure that the
solution set S1 of problem (4) can be expressed as

S1 = Π
(
proxθ2(Fix

(
rproxθ1rproxθ2

)
)
)
,

where Π: K → 2X : ν 7→ ∂f∗(A∗ν)∩A−1(∂g∗(−ν)). This is
certainly a fixed point characterization of S1 but not the form
as in (3).
B. Augmented Lagrangian method

The augmented Lagrangian method{
zk+1 ∈ argmin

z∈X×K

(
F (z)− ⟨νk,Az⟩K + 1

2∥Az∥2K
)

νk+1 = νk −Azk+1

(19)

is an algorithmic solution to the problem in (5). As reported
in [25], [43], [44], under certain conditions, the augmented
Lagrangian method can be interpreted as an iterative use of a
proximity operator (or the so-called proximal point algorithm
in (34)) for the dual problem

minimize
ν∈K

F ∗(A∗ν) + ι∗{0}(−ν) = F ∗(A∗ν)

of (5). Indeed, by defining θ ∈ Γ0(K) as θ : K → (−∞,∞] :
ν 7→ F ∗(A∗ν), the following fact is obtained under a slightly
different condition from [25], [43], [44].

Fact 3. Under the qualification condition (9) for the problem
in (5) and

0 ∈ sri(dom(F ∗)− ran(A∗)),

the proximal point algorithm (see (34))

νk+1 = proxθ(νk)

for finding a point in Fix(proxθ) = argmin
ν∈K

θ(ν) reproduces

the augmented Lagrangian method (19) by letting zk+1 ∈
X ×K such that {

zk+1 ∈ ∂F ∗(A∗νk+1)
Azk+1 = νk − νk+1.

However, the fixed point characterization of S1 through
Fix(proxθ) is hardly applicable to Fact 1 to solve the hierar-
chical optimization problem (12). Under the same conditions
as in Fact 3, Fact 5 and Fact 6 ensure that S1 can be expressed
through Z1 in (6) as

Z1 = ∂F ∗(A∗ Fix(proxθ)) ∩ A−1({0}).
This is certainly a fixed point characterization of S1 but not
the form as in (3).
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C. Condat’s primal-dual splitting

Consider a convex optimization problem

find x⋆ ∈ argmin
x∈X

(f(x) + g(x) + h(Ax)) =: SPDS ̸= ∅, (20)

where f ∈ Γ0(X ) is a smooth convex function with β-
Lipschitzian gradient ∇f , g ∈ Γ0(X ) and h ∈ Γ0(K) are
proximable convex functions, and A : X → K is a bounded
linear operator. Then, for user-defined parameters γ1, γ2 > 0,
the Condat’s primal-dual splitting{

xk+1 = proxγ1g(xk − γ1(∇f(xk)−A∗νk))
νk+1 = proxγ2h∗(νk − γ2A(2xk+1 − xk))

(21)

is an algorithmic solution to problem (20). It was reported in
[40] that this algorithm can be interpreted as an iterative use
of a nonexpansive operator.

Fact 4. Define TPDS : X ×K → X ×K : (x, ν) 7→ (x̂, ν̂) with

x̂ := proxγ1g(x− γ1(∇f(x)−A∗ν))

ν̂ := proxγ2h∗(ν − γ2A(2x̂− x)),

where γ1, γ2 > 0 are chosen to satisfy

κ :=
1

β

(
1

γ1
− γ2∥A∥2op

)
>

1

2
.

Then (a) the operator TPDS is 2κ
4κ−1 -averaged nonexpansive

in a real Hilbert space X ×K equipped with a non-standard
inner product

⟨(x1, ν1), (x2, ν2)⟩P := ⟨(x1, ν1),P(x2, ν2)⟩X×K (22)

for any (x1, ν1), (x2, ν2) ∈ X ×K with

P : X ×K → X ×K :

(
x
ν

)
7→
( 1

γ1
x−A∗ν

−Ax+ 1
γ2
ν

)
.

(b) (Condat’s primal-dual splitting method (21)) Suppose that
the qualification condition

0 ∈ sri(dom(h)−Adom(f +g)) = sri(dom(h)−Adom(g))

for problem (20) holds true, which guarantees that the solution
set S∗

PDS := argmin
ν∈K

((f + g)∗(A∗ν) + h∗(−ν)) of the dual

problem of (20) is non-empty, and Fix(TPDS) = SPDS ×
S∗
PDS(̸= ∅). Then, Fact 7 leads to the iterative process

(xk+1, νk+1) = TPDS(xk, νk)

converging weakly to a point in SPDS × S∗
PDS.

An efficacy of the Condat’s primal-dual splitting algorithm
(21) is avoiding the computation of proxf and inversions
involving A in its update (21), which results in an efficient
computational cost.

However, unfortunately, plugging TPDS into Fact 1 results in
a requirement of inversion P−1 because the gradient depends
on the definition of the inner product (see (25) and also [40]).
To see this, consider the hierarchical convex optimization
problem

minimize
x∈X

ψ(x) s.t. x ∈ SPDS,

which can be translated into a problem

minimize
(x,ν)∈X×K

ΥPDS(x, ν) (23)

s.t. (x, ν) ∈ SPDS × S∗
PDS = Fix(TPDS)

over a real Hilbert space X×K equipped with the non-standard
inner product (22), where ΥPDS ∈ Γ0(X × K) defined by
ΥPDS(x, ν) = ψ(x) + 1

2∥ν∥
2
K. Since problem (23) has the

same form as (1), plugging TPDS into Fact 1 results in an
algorithmic solution to problem (23)

(xk+1, νk+1) = TPDS(xk, νk) (24)

− λk+1P−1∇ΥPDS(TPDS(xk, νk)),

where ∇ΥPDS(x, ν) = (∇ψ(x), ν) (∀(x, ν) ∈ X × K).
Therefore, even though the operator TPDS can be efficiently
computed, the update (24) involves the inversion7 P−1.

APPENDIX

A. Selected Elements in Convex Optimization

(Proper lower semicontinuous convex function) A function
f : X → (−∞,∞] is said to be proper if its effective domain
dom(f) := {x ∈ X | f(x) < ∞} is nonempty. A function
f : X → (−∞,∞] is called lower semicontinuous if its lower
level set lev≤αf := {x ∈ X | f(x) ≤ α}(⊂ X ) is closed for
every α ∈ R. A function f : X → (−∞,∞] is called convex
if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X
and λ ∈ (0, 1).
(Gâteaux derivative) Let U be an open subset of X . Then
a function f : U → R is called Gâteaux differentiable (or
differentiable) at x ∈ U if there exists a(x) ∈ X such that

lim
δ→0

f(x+ δh)− f(x)

δ
= ⟨a(x), h⟩ (∀h ∈ X ). (25)

In this case, ∇f(x) := a(x) is called Gâteaux derivative (or
gradient) of f at x. If a function f ∈ Γ0(X ) is Gâteaux
differentiable, x⋆ ∈ X is a minimizer of f if and only if
∇f(x⋆) = 0.
(Subdifferential) For a function f ∈ Γ0(X ), the subdifferen-
tial of f is defined as the set valued operator

∂f : X → 2X

x 7→ {u ∈ X | ⟨y − x, u⟩+ f(x) ≤ f(y), ∀y ∈ X}.

Every element u ∈ ∂f(x) is called a subgradient of f at
x. For a function f ∈ Γ0(X ), x⋆ ∈ X is a minimizer of
f if and only if 0 ∈ ∂f(x⋆). Note that if f ∈ Γ0(X ) is
differentiable at x ∈ X , then its subdifferential at x becomes
singleton {∇f(x)}.
(Conjugate function) For a function f ∈ Γ0(X ), the conju-
gate of f is defined by

f∗ : X → [−∞,∞] : u 7→ sup
x∈X

(⟨x, u⟩ − f(x)).

Let f ∈ Γ0(X ). Then, we have

(∀(x, u) ∈ X × X ) u ∈ ∂f(x) ⇔ x ∈ ∂f∗(u),

7For this issue, a practical solution with use of the Neumann series is
discussed in [40].
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which implies that (∂f)−1(u) := {x ∈ X | u ∈ ∂f(x)} =
∂f∗(u) and (∂f∗)−1(x) = {u ∈ X | x ∈ ∂f∗(u)} = ∂f(x).
(Conical hull, span, convex sets) For a given nonempty set
C ⊂ X , cone(C) := {λx | λ > 0, x ∈ C} is called the
conical hull of C, and span(C) denotes the smallest linear
subspace of X containing C, i.e., the intersection of all the
linear subspaces of X containing C. The closure of span(C)
is denoted by span(C). A set C ⊂ X is called convex if
λx + (1 − λ)y ∈ C for all x, y ∈ C and λ ∈ (0, 1). Strong
relative interior of a convex set C ⊂ X is defined by

sri(C) := {x ∈ C | cone(C − x) = span(C − x)}.

(Indicator function) For a nonempty closed convex set C ⊂
X , the indicator function of C is defined by

ιC : X → (−∞,∞] : x 7→
{

0, if x ∈ C;
+∞, if x ̸∈ C,

which belongs to Γ0(X ). In particular, the indicator function
ι{0} ∈ Γ0(X ) of {0} ⊂ X satisfies that

(∀u ∈ X ) ι∗{0}(u) = sup
x∈X

(⟨x, u⟩ − ι{0}(x)) = 0.

(Fenchel-Rockafellar duality) Let f ∈ Γ0(X ), g ∈ Γ0(K),
and A : X → K a bounded linear operator. The primal problem
associated with the composite function f + g ◦A is

minimize
x∈X

f(x) + g(Ax), (26)

its dual problem is

minimize
u∈K

f∗(A∗u) + g∗(−u), (27)

µ := infx∈X (f(x)+g(Ax)) is called the primal optimal value,
and µ∗ = infu∈K(f

∗(A∗u)+g∗(−u)) the dual optimal value.

Fact 5 ([3, Theorem 15.23]). The condition

0 ∈ sri(dom(g)−Adom(f)), (28)

the so-called qualification condition for problem (26), implies
the existence of a minimizer of problem (27) and µ =
−minu∈K(f

∗(A∗u) + g∗(−u)) = −µ∗.

Fact 6 ([3, Theorem 19.1]). Suppose that dom(g) ∩
Adom(f) ̸= ∅ (note: this is not sufficient for (28)). Let
(x, u) ∈ X ×K. Then the following are equivalent:
(i) x is a solution of the primal problem, u is a solution of

the dual problem, and µ = −µ∗.
(ii) A∗u ∈ ∂f(x) and −u ∈ ∂g(Ax).

(iii) x ∈ ∂f∗(A∗u) ∩A−1(∂g∗(−u)).

B. Monotone operators, nonexpansive operators, Kras-
nosel’skiı̆-Mann iteration

(Monotone operator) A set-valued operator T : X → 2X is
called monotone over S(⊂ X ) if

(∀x, y ∈ S)(∀u ∈ Tx)(∀v ∈ Ty) ⟨u− v, x− y⟩ ≥ 0.

In particular, it is called η-strongly monotone over S if there
exists some η > 0 s.t.

(∀x, y ∈ S)(∀u ∈ Tx)(∀v ∈ Ty) ⟨u− v, x− y⟩ ≥ η∥x− y∥2.

(Nonexpansive operator) An operator T : X → X is called
nonexpansive if

(∀x, y ∈ X ) ∥Tx− Ty∥ ≤ ∥x− y∥. (29)

A nonexpansive operator T is said to be α-averaged if there
exists α ∈ (0, 1) and a nonexpansive mapping T̂ : X → X
such that

T = (1− α)I + αT̂ . (30)

Fact 7. (Krasnosel’skiı̆-Mann (KM) Iteration [45], [46])
For a nonexpansive operator T : X → X with Fix(T ) ̸= ∅
and any initial point x0 ∈ X , the sequence (xk)k∈N generated
by

xk+1 = (1− αk)xk + αkTxk

converges weakly to a point in Fix(T ) if (αk)k∈N ⊂ [0, 1]
satisfies

∑
k∈N αk(1 − αk) = ∞. Note that the weak limit

of (xk)k∈N depends on the choices of x0 and (αk)k∈N. In
particular, if T is α-averaged (see (30)), a simple iteration

xk+1 = Txk = (1− α)xk + αT̂xk (31)

converges weakly a point in Fix(T ) = Fix(T̂ ).

(Proximity operator [47], [48]) The proximity operator of
f ∈ Γ0(X ) is defined by

proxf : X → X : x 7→ argmin
y∈X

f(y) +
1

2
∥y − x∥2. (32)

Note that proxf (x) ∈ X is well-defined for all x ∈ X due to
the coercivity and the strict convexity8 of f(·) + 1

2∥ · −x∥
2 ∈

Γ0(X ). It is also well-known that proxf is nothing but the
resolvent of ∂f , i.e., proxf = (∂f + I)−1 =: J∂f , which
implies that

x ∈ Fix(proxf ) ⇔ x ∈ argmin
y∈X

f(y). (33)

Thanks to this fact, the set of all minimizers of f ∈ Γ0(X )
can be characterized in terms of a single-valued map, i.e.,
proxf . Moreover, since the proximity operator is 1/2-averaged
nonexpansive, i.e., rproxf := 2proxf −I is nonexpansive, the
iteration

xk+1 = proxf (xk) (34)

converges weakly to a point in argmin
x∈X

f(x) = Fix(proxf )

by (31) in Fact 7. The iterative algorithm (34) is known as
proximal point algorithm [43].
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8(Coercivity and strict convexity) A function f ∈ Γ0(X ) is said to be
coercive if

∥x∥ → ∞ ⇒ f(x) → ∞.

Coercivity of f ∈ Γ0(X ) implies argmin
x∈X

f(x) ̸= ∅. A function f : X →

(−∞,∞] is called strictly convex if f(λx+(1−λ)y) < λf(x)+(1−λ)f(y)
for all λ ∈ (0, 1) and for all x, y ∈ X : x ̸= y. Strict convexity of f ∈ Γ0(X )
implies that the set of minimizers is at most singleton.
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