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Abstract—We propose a verification-based algorithm for noise-
less Compressed Sensing that reconstructs the original signal
operating on a sparse graph. The proposed scheme has affordable
computational complexity and its performance is significantly
better than previous verification-based algorithms and similar to
AMP-based algorithms. We also show that the performance of
a noiseless compressed sensing scheme when verification-based
algorithms and a sparse matrix is employed to reconstruct the
original signal can be upper bounded by the performance of a
LDPC code employing the same parity matrix when correcting
a codeword transmitted through a BEC.

I. INTRODUCTION

The noiseless Compressed Sensing (CS) problem considers
the estimation of an unknown and sparse vector x ∈ RN

from a vector of linear observations y ∈ RM, M < N, y =
Ax where A ∈ RM×N is a fixed randomly generated matrix
known as the measurement matrix and only a small number
K, K << N, of elements of x are non-zero, so the sparsity
ratio is γ = K/N. The set containing the positions of these
elements is known as the support set, defined as S , {i ∈
1, ...,N : xi 6= 0}, with |S| = K. The solution to this system of
equations is known to be given by the vector x̂0 that minimizes
‖x‖0 (l0-norm) subject to y = Ax̂0, which is a non-convex
optimization problem. The authors in [1], [2] established that
the vector x̂1 with minimum l1-norm subject to y = Ax̂1

coincides with x̂0 whenever the measurement matrix satisfies
the RIP conditions [1], [3] and guarantees that all sequences
with at most k non-null entries can be reconstructed when the
number of samples m is large enough [4].

Recently, within this framework, the authors in [5] showed
that in the N asymptotic regime a matrix with rate r > γ
suffices to reconstruct any real-valued signal with an sparsity
ratio γ in the almost lossless compression setting, i.e. allowing
an arbitrarily low fraction of sequences with reconstruction
errors. Simultaneously, in the literature, some algorithms based
on message propagation over graph representations of mea-
surement matrices were shown to outperform the theoretical
limits of the classical compressed sensing approach [4], e.g.
the scheme proposed in [6] based on the approximate message
passing (AMP) [7], and the verification-based algorithms [8],
[9].

Recently, the authors in [10] showed that capacity achieving
coding schemes for the Binary Erasure Channel (BEC) are
also optimal for the noiseless compressed sensing problem
and showed that polar codes/decoding algorithms [11] can be

used to reconstruct a sparse signal with a number of samples
M > K.

In this paper we do two contributions for the almost lossless
compressed sensing problem. First, we propose to exploit
the analogy with the BEC from a point of view different
than that described in [10]. We show that the performance
of the verification-based algorithm for a given sparse graph
(matrix) can be upper bounded by the performance an LDPC
code in the BEC. Second, we introduce a verification-based
algorithm for noiseless compressed sensing based on list mes-
sage passing [12] that outperforms the previous verification-
based algorithms and has a performance similar to one of
the Estimate-Maximize AMP-based algorithm with Gaussian-
Bernoulli a priori (EM-GB-AMP) [6]..

The paper is structured as follows. In section II we introduce
the almost lossless compressed sensing signal model and the
notation employed in sparse graphs. Next, in section III,
we briefly summarize verification-based algorithms and show
that the performance of LDPC in the BEC is equal to the
one of a verification-based algorithm for compressed sensing
when the support set is known. Afterwards, in section IV,
we introduce the list message passing for CS (CS-LMP).
Finally we illustrate the performance of CS-LMP with some
simulation results and we draw some conclusions.

II. PREVIOUS CONCEPTS

A. Almost lossless noiseless compressed sensing setting
In the noiseless compressed sensing set up we assume that

the source vector x consists of N i.i.d. copies of a real valued
random variable distributed according to a mixture of discrete
and continuous distributions, as follows

Px = (1− γ)δ0 + γPC (1)

where δ0 denotes a unit mass at zero, PC is a continuous
distribution from which the non-zero entries are drawn, and
0 ≥ γ ≥ 1 parametrizes the sparsity of the signal vector x.
Note that this vector has approximately γN non-null coeffi-
cients. The measurement vector y ∈ RM is generated as the
product of x and the measurement matrix A ∈ RM×N, so the
compression rate is r = M/N.
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At the decoder side, a reconstruction or decoding algorithm
performs an attempt to reconstruct the original signal vector
x̂ under a given criteria of fidelity.

In general this problem reduces to the design of mea-
surement matrix and a decoding algorithm with minimum
compression rate r for the given criteria of fidelity. It was
shown in [5] that it is possible to reconstruct almost all signal
vectors with sparsity γ whenever the compression rate is
r ≥ γ + o(1), in the N asymptotic limit.

B. Graph representation of a matrix

A sparse measurement matrix A can be represented by
a bipartite graph A having two types of nodes: N variable
nodes (one per entry of vector x) and M check nodes (one
per entry of vector y) where the variable (check) nodes are
strictly connected to dv check (dc variable) nodes. These
connections (edges) are indicated by the non-null entries of
the measurement matrix A. We denote as the neighborhood of
the j-th check node Ij to those variable nodes that contribute
to generated the yj measurement. Similarly, we denote as the
neighborhood of a variable node to those check nodes that are
connected to it by an edge.

Bipartite graphs belong to ensembles that are fundamentally
characterized by the polynomials named check and variable
node degree distribution, R(d) and L(d) respectively, which
define the fraction of check and variable nodes that have d
edges in the graph. Similarly, we can define the fraction of
edges connected to check or variable nodes of degree d as
λ(d) and ρ(d), respectively.

We say that a graph is regular whenever all the variable
nodes have the same degree dv and all check nodes have the
same degree dc. It may also happen that the graphs are right
(left) regular whenever all check (variable) nodes have the
same degree dc (dv) and the variable (check) node degree
distribution is irregular.

III. VERIFICATION-BASED ALGORITHMS

The Verification-based Algorithms (VA) are local message
passing strategies over a graph representation of a measure-
ment matrix. When employed in the CS problem their main
features are that (i) variable nodes can infer their values
with infinite reliability in some situations, (ii) they can be
implemented with O(N) computational complexity and (iii)
their performance does not depend of the values of the
matrix coefficients whenever the corresponding graph is free
of length-four cycles [9], [13].

When applied to the noiseless CS setup, the VA exploit that
the graph is sparse and the probability density function of the
components of vector x is a continuous function with a unit
mass concentration at zero, as stated before. Due to the latter
fact the non-null coefficients of the signal vector x must be
different and furthermore the probability that a sum of a given
set of non-null coefficient is equal to a non-null coefficient of
the signal vector is also equal to zero.

In this section, first we outline the node-based verification
algorithm (NB-VA) to use it as introduction to the list message

passing algorithm presented in the following section. After-
wards, we revisit the Genie algorithm proposed in [9] that can
be employed as a performance benchmark for the verification-
based algorithm and we propose an alternative analysis for the
genie algorithm that eases the one previously presented by the
authors in [14].

A. Node-based verification algorithm

The Node-based Verification algorithm (NB-VA) [14] gath-
ers all the features of the family of verification algorithms.
In the NB-VA check nodes (CN) and variable nodes (VN)
exchange messages with two fields {state,x} where state=’v’
indicates that we know for sure that the value of the associated
variable node is x (i.e. the variable node is verified) whereas
state=’nv’ informs that x is solely an estimate of the variable
node value (i.e. the variable node is still not verified).

CNs and VNs are activated alternatively. During each VN
activation round the variable nodes try to infer (verify) the
values of the components of vector x that they represent, based
on all the messages received though their edges, checking
whether (VN.i) any of the received messages is verified or
(VN.ii) at least two of the received message have the same
value. The VNs that accomplish any of these two conditions
swap their state to verified and update their value. Afterwards
the CNs also try to infer the value of the VNs in their
neighborhoods testing whether (CN.i) the sum of all the
verified messages is equal to its measurement (in this case
the non-verified VNs in their neighborhood are equal to zero)
or (CN.ii) only one VN in its neighborhood is non-verified. For
a detailed explanation of the implementation of the algorithm
see [8] or [9].

B. Genie Verification Algorithm

The authors of [9] proposed the Genie verification algorithm
as a benchmark for the verification algorithms. This bench-
mark is obtained assuming the support set to be known, i.e.
initially the variable nodes that do not belong to the support set
are verified. They also derived a set of equations that predicted
accurately the evolution of the Genie algorithm on the N-
asymptotic regime. However, the resulting density evolution
analysis was quite complex.

The complexity of the analysis of the Genie can be reduced
if we notice the similarities between the resulting setup (a
fraction γ of the variable nodes is non-verified and the
remaining variable nodes 1 − γ is verified) and a LDPC
error correcting code correcting a codeword transmitted though
a binary erasure channel with erasure probability γ; this
resemblance is straightforward if we label the non-verified
variable nodes as erasures and, furthermore, check and variable
nodes perform the same operations in VA than in for the BEC
(see [15] for further details on BP decoding for the BEC).
For VA, variable nodes perform VN.i and check nodes the rule
CN.ii, as shown in the previous section. Hence, we can employ
the density evolution equations for the BEC given in [15] to
find out the γ∗ threshold (i.e. the maximum γ so as the bit
erasure probability is arbitrarily low) of a graph characterized

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1117 APSIPA ASC 2015



by the edge degree profiles λ(x) and a ρ(x) has or not a fixed
point computing iteratively

x(t) = γλ
(

1− ρ∗
(

1− x(t−1)
))

(2)

where x(t) is the probability that a check nodes transmit a
non-verified message at the t-th iteration when initially all
incoming messages to the variable nodes of graph A are non-
verified message, x(0) = 1. It can be shown that (2) provides
the same thresholds for the genie algorithm given in [9].

IV. LIST MESSAGE PASSING FOR COMPRESSED SENSING

Recently, the authors of [12] proposed a new verification
based-algorithm for q-ary channel coding, named List Message
Passing (LMP). The main differences of LMP with respect to
verification-based algorithms are that, (i) whenever the field
’state’ of a message is ’non-verified’ the field value is a list
of estimates of the value of the variable node and that (ii)
all the nodes exchange extrinsic information. The drawback
of this channel coding algorithm is that the size of the list of
estimates grows unbounded with the iteration number and the
check node degree.

Clearly, the complexity of direct application of LMP to CS
is non-affordable because all nodes are originally unknown
and because the average check node degree is proportional to
γ−1. With this in mind, in this section, we present an adap-
tation of the list message passing algorithm for compressed
sensing (CS-LMP) that overcomes this problem and aims at
approaching the genie algorithm performance with affordable
computational complexity.

A. List message passing for compressed sensing

In this message passing strategy the nodes exchange mes-
sages having the following form: {state,x} where state is either
’nv’ or ’v’ (as in the previous section) and x is either the
variable value (when ’v’) or a list of its estimates of length
dv − 1 (when ’nv’).

The check nodes divide their edges into the sets of verified
and non-verified edges, Iv and Inv , and subtract the contri-
bution of the verified variable nodes from their measurement
to obtain y′ as follows

y′j = yj −
∑
∀i∈Iv

aj,i xi (3)

Now, each check node performs a search in order to check
whether any combination of estimates received from the
variable nodes indexed in Inv sum up to y′. Apparently,
check nodes must perform u pto ddc

v searches to ensure that
no combination sums up to y′. However, this search can be
reduced as follows.

In order to reduce the complexity of this search we can
exploit the way how the verification algorithms exploit the
sparsity of the graph. The non-null entries of the signal x
are activated with probability γ, so the edges of the graph
are connected to variable nodes that represent non-null entries
of the signal vector also are and thus the edges are active
also with probability γ. Hence the number of active edges per

Algorithm 1 Check node update rules
for j = 1, ...,M yj and their Ij

Initialize: y′, Xj and Inv
exec: [successful, x̂′j ] = search(y′,Xj ,Inv)
if: successful search,

update: ∀i ∈ Inv , µj→i = {v, x̂′i}
else:

update: ∀i ∈ Inv , µj→i = {nv, y′}
end:

endfor

check node follows a binomial distribution in the N asymptotic
regime, as shown below

p(|I ∩ S| = i) =
∑
∀dc

R(dc)

(
dc
i

)
γi (1− γdc−i) (4)

where we assumed that the check node degree distribution
is irregular, (for check regular codes there would be only
one term). Obviously a given fraction of the check nodes is
generated by the contribution of a single non-null entry of
the signal vector (with probability p(|I ∩ S| = 1)). So, if
this fraction is high enough the probability that some variable
nodes receive the same estimates from different check nodes
is higher and hence the variable nodes can decide that the
common is their real value (if the graph is free of length four
cycles or whenever the weights of the edges are i.i.d. according
to some continuous distribution the values y′ in equation 3 will
be all different).

Thus, VA based codes require a sufficiently large fraction of
measurements equal to a single variable node p(|I∩S| = 1) in
order to enable the verification process at the variable nodes or
to allow them to forward a list of estimates to the check nodes
in their neighborhood where the real value of the variable node
is between the estimates.

Let us focus on a right regular code with check node
of degree dc. In this case, in average the neighborhood of
a check node contains dcγ non-null variable nodes. Thus,
as the p(|I ∩ S| = 1) must be sufficiently high to enable
the verification process, there are usually several variable
nodes that represent zeros contributing to the generation of a
given measurement (the mass concentration of the binomial
distribution in equation (4) must be concentrated close to
i = 1). Due to this the check nodes can initially perform
the searches assuming that almost all the variable nodes in
their neighborhood are zero, hoping to find a combination of
estimates that sums up to the y′ in equation (3).

In general, for irregular check node degree distributions,
there are several mass concentrations but it also holds that
the one belonging to the check nodes with lowest degree
is concentrated close to i = 1, and the remaining mass
concentrations are situated further to the right, hence is also
highly unlike to find the proper combination of estimates at
the check nodes with larger number of edges.

Algorithm 1 summarizes the check node operations. Basi-
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Algorithm 2 Variable node update rules
for each non-verified variable node i applies:

if: The variable node receives a verified mes-
sage
then: propagates this message through the
remaining edges {’v’, y′}.

elseif The variable node receives at least two non-
verified messages with the same estimate y′,
then propagates {’v’, y′} to all the nodes
connected to them.

else: propagates to each check node j in its
neighborhood: µi→j = {′nv′,y′j} , where
y′j is the list of estimates received from all
the other check nodes.

endfor

cally, the j-check node removes from its measurement yj the
contribution of the verified variable nodes in its neighborhood
as in equation (3). Then executes an exhaustive search, test-
ing whether any combination sums up to y′. Note that Xj

represents the list of estimates received from the non-verified
variable nodes that are indexed in Inv1 After performing the
search, if the check nodes found a combination of estimates
that sum up to y′, they send to all the variable nodes indexed
in Inv a verified message with the proper value. Otherwise
they send a non-verified message with an estimate y′.

Algorithm 2 summarizes variable nodes operation. When
they receive a verified message or at least two non-verified
messages with the same estimate, their state swaps to verified
with the value indicated. Otherwise they keep in a non-verified
state and append to the non-verified flag a list with all the
estimates received though the remaining edges.

B. Computational complexity of list message passing for CS
In this section we evaluate the computational complexity of

the proposed algorithm for a fixed sparsity ratio γ and rate r
under the assumptions that the length N is large enough so
that the signal vector has approximately γN nonzero entries.
Furthermore, theoretically the number of samples M to almost
perfectly reconstruct a γ-sparse signal of length N vector
is M = γN + o(N), hence M is O(γN). We consider that
comparisons, products and sums have the same complexity.

The computational complexity of the activation of a variable
node is dominated by the search of at least two estimates with
equal value and it requires

(
dv

2

)
operations. So the activation

of all the variable nodes is O(d2vN).
The list of the messages that the variable and check nodes

send to the check and variable nodes has at most length
dv − 1 and 1, respectively. These messages have to be multi-
plied/divided by the weight of the edges, so the complexity of
this operation is O(d2vN), as there are dvN edges in the graph.

1This list has in average |Inv |
∑

∀dv L(dv)dv values. The wise way to
perform the search is first assume that all but one input messages are zero,
i.e. perform (dv−1)

(1Inv|
1

)
comparisons, then assume that two components

are non null, i.e. perform (dv − 1)2
(1Inv|

2

)
comparisons, and so on.
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Figure 1. Performance comparison of CS-LMP (LMP) and NB-VA (VA)
and different N compared to the thresholds of the NB-VA and the Genie
algorithm, for the same graph.

Each check node performs at most ddc
v comparisons. Hence

the activation of all the check nodes in one iteration has a
computational complexity O(γNddc

v ).
Thus the overall computational complexity of the first

iteration is O(N(γddc
v + 2d2v)).

V. RESULTS

Figure 1 depicts the performance of the NB-VA and CS-
LMP algorithm for different sequence lengths compared with
the thresholds of the NB-VA and the BEC benchmark. The
horizontal axis represents the sampling efficiency (K/M) and
the vertical axis the sequence error rate (SER), p(x 6= x̂).
The plots of the performance of the NB-VA and CS-LMP
were obtained by Monte Carlo simulations. Each simulation
was stopped when 200, 200 or 20 erroneous reconstructions
were obtained, for N = 2000, 10000 and 100000, respectively.
A graph degree profile optimized in [9] for the NB-VA of
rate 0.8 was employed, it included two degrees for check
and variable nodes and the matrix coefficients were either 0
or 1. The non-null entries of the x are i.i.d. according to a
standard distribution. Note that verification algorithms declare
that a sequence is perfectly reconstructed whenever all variable
nodes are verified and thus, the values of the entries of estimate
vector are equal to the ones of the original sequence.

Figure 1 shows that both the performance of the NB-VA and
CS-LMP increases as N increases, as expected. It also shows
that the performance of the NB-VA approaches theoretical
limit obtained by density evolution in [9] as N increases. The
figure also shows that the CS-LMP clearly outperforms the
NB-VA for all N, being the gain of efficiency approximately
of 0.07 irrespective of N. In spite of this gain, the gap to BEC
benchmark is still large for this ensemble.

Figure 2 compares the performance of the CS-LMP with
the one of the estimate-maximizate Gaussian-Bernoulli Ap-
proximate Message Passing (EM-GB-AMP) algorithm [6] and
the BEC benchmark, for different block lengths. The entries
of the measurement matrix of the EM-GB-AMP are i.i.d
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Figure 2. Performance comparison of CS-LMP (LMP) vs. EM-GB-AMP for
different N compared to the threshold of the Genie algorithm.

according to a standard distribution. The measurement matrix
of the CS-LMP is the same as before. Note that both matrices
have the same rate. As before, the horizontal axis represents
the sampling efficiency and the vertical axis the SER. The
performance plots of the EM-GB-AMP and CS-LMP were
obtained by Monte Carlo simulations and each simulation was
stopped once 200 erroneous reconstructions were obtained.
As before, for the LMP a sequence is declared perfectly
reconstructed whenever all variable nodes are verified. For the
EM-GB-AMP, a sequence is declared free of errors whenever
the normalized minimum square error is ‖x−x̂‖

2
2

‖x‖22
< 10−4.

Figure 2 shows that for the shortest block length,
N = 2000, 10000, initially the EM-GB-AMP algorithm out-
performs the CS-LMP algorithm but as the sparsity of the sig-
nal decreases, the SER of the EM-GB-AMP algorithm shows
an error floor whereas the CS-LMP SER keeps decreasing and
eventually the CS-LMP outperforms the EM-GB-AMP.

For the largest block length, both algorithms (with their own
different measurement matrices) have the same performance.
Notice that for this block length, the plot of the EM-GB-AMP
algorithm also seems to depict an error floor.

VI. CONCLUSIONS

We showed the list message passing for compressed sensing
outperforms the best verification-based algorithm know up to
the date, irrespectively of the block length N. Wee also showed
that LMP for CS has a similar performance of the EM-GB-
AMP algorithm for block lengths of 104. The losses of the
LMP for the shorter block lengths can be attributed to the
inherent difficulties of generating sparse graphs with a large
fraction of check and variable nodes with high degrees. In
case of the EM-GB-AMP algorithm the presence of the error
floor can be attributed to deficiencies in the generation of the
measurement matrix. It is remarkable that even for average

block lengths (∼ 104) the AMP-based algorithm presents error
floor for low sequence error probabilities. The reader must note
that the performance of LMP-based algorithms can be further
increased by using sparse matrices designed for them.

We also showed that the performance of a noiseless com-
pressed sensing scheme using a sparse graph A ∈ Λ(λ, ρ)
in the N asymptotic regime can be upper bounded by the
performance of a LDPC code of the same ensemble correcting
a codeword transmitted through a BEC as the latter problem
is equivalent to the former when the support set of the sparse
signal is known and a verification algorithm is employed as a
reconstruction algorithm.
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