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Abstract—This paper proposes to make super-resolution for 

low-resolution image via a hybrid scheme making use of the 

wavelet domain processing and the New Edge-Directed 

Interpolation (NEDI). The proposed method combines the 

accurate low frequency information obtained from the wavelet 

transform and phase-free high frequency information predicted 

from the Shift-Free NEDI (SF-NEDI). The underlying idea of this 

approach is to study the pixel shift caused by the wavelet 

transform and to fix this problem when using the SF-NEDI to 

enlarge image, such that more accurate high frequency 

information can be extracted from the enlarged image. By using 

the framework of wavelet transform, the proposed approach uses 

the original low-resolution image and high frequency information 

from the SF-NEDI to realize image super-resolution. Extensive 

experimental results show that the proposed hybrid approach 

can achieve about 0.7 dB improvement in peak signal-to-noise 

ratio over the Wavelet Zero-padding and 1.35 dB over the SF-

NEDI.   

Keywords - Image processing, Image super-resolution, New 

Edge-Directed Interpolation (NEDI), pixel shift, wavelet transform 

I.  INTRODUCTION  

Image super-resolution is a wide subject in image 
processing. Its goal is to obtain high-resolution (HR) images 
from blurred and noisy down-sampled low-resolution (LR) or 
natural images. Its applications in HDTV and video scalable 
coding [1] [2] have drawn a lot of attention. However, since 
with limited information about LR images, getting HR image 
is an ill-posed problem. Hence, to study the model of 
retrieving LR image can help to do super-resolution more 
accurately.  

Image super-resolution can be categorized into two groups: 
spatial domain method [3]-[16], and transform domain 
methods [12]-[27]. 

Spatial domain method is one type of super-resolution 
where the LR image is down-sampled from the HR image in 
the spatial domain usually with/without an anti-aliasing pre-
filtering. One special type of spatial domain methods is 
interpolation, for which the LR image is directly down-
sampled from the HR image without any anti-aliasing pre-
filtering. The advantage of interpolation is that it can predict 
the missing pixels from ground-truth LR pixels and the 
enlarged image can make sure one quarter (if 
2 2 enlargement) of pixels are from the original image. 
Methods of interpolation can be categorized into three groups: 
polynomial based methods [3]-[6], edge directed methods [7]-
[8] and learning-based methods [9]-[11]. From these methods, 

polynomial based methods are the simplest and fastest 
methods. On the contrary, learning-based methods have 
complicated learning process to slow down the speed in order 
to obtain outstanding results. Edge directed methods make use 
of the statistical estimation within local structure to predict 
edges and textures. The new edge-directed interpolation 
(NEDI) based methods [7] have proven to be useful in many 
cases. Besides interpolation, most of the general spatial 
domain methods consider to obtain the LR image from the 
degraded HR image, for which the HR image is blurred, noisy 
and/or down-sampled by specific kernels. Reference [12] 
summarizes the model to describe the whole degradation 
process of HR image. Based on this model, many statistic-
based methods [12]-[17] make use of LR characters to predict 
HR images. Usually, they include up-sampling, deblurring and 
denoising steps to obtain the super-resolution (SR) image. For 
deblurring and denoising steps, to reach a better visual quality, 
many methods use iterative scheme or more than one single 
LR image to collect more useful information to do super-
resolution. For example, reference [12] uses different blurring 
kernels and point spread functions to obtain several LR images 
and make use of them to reconstruct one HR image. Reference 
[17] uses a two-phase iterative scheme to optimize the MAP-
POCS (Maximum a Posteriori Probability - Projection onto 
Convex Sets) method. Hence, to better reconstruct the HR 
image from this type of down-sampling method, more 
processing stages and/or better LR information are required. 

Transform domain methods use known transform 
approaches to down-sample HR image without adding random 
noise, point spread functions or blurring filters for which 
pixels of the resultant LR image are transformed version of the 
original HR pixels. Usually, LR pixels are related to the 
nearest few HR pixels. Two major approaches are DCT-based 
super-resolution [18]-[23] and wavelet-based super-resolution 
[24]-[29]. References [21]-[23] make explicit explanation on 
how to combine DCT zero-padding with the 6-tap Wiener 
filter to obtain a better result. Using the same model of DCT-
based super-resolution, [24]-[29] give further study on 
wavelet-based methods. [27] illustrates how to use cycle 
spinning to modify the ringing artifacts that happens after the 
DWT Zero-padding. It improves the visual quality but the 
improvement of PSNR is limited. Similar to [21], [29] 
proposes how to combine discrete wavelet transform with 
stationary wavelet transform or DCT transform to enhance the 
resolution of the LR image, which gives a promising direction 
for using wavelet transform to do super-resolution. The 
contribution of [29] is that it uses the stationary wavelet 
transform (SWT) to correct phase shift caused by discrete 
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wavelet transform (DWT) since stationary wavelet transform 
is undecimated version of DWT such that the hybrid scheme 
manages to improve the PSNR. However, using SWT does not 
obtain any new high frequency information and it only fixes 
phase shift of low frequency instead of high frequency.  

The motivation of this paper is to make use of the wavelet 
transform to do super-resolution via the NEDI. We assume 
that the LR image is a down-sampled version of the HR image 
via the wavelet transform. It is interesting to note that most of 
wavelet-based methods are based on the assumption that the 
LR image is obtained from direct down-sampling, or generally 
blurred and noised down-sampling. There are very few papers 
talking about the super-resolution based on the LR down-
sampled from the DWT for reference. In this paper, to discuss 
the super-resolution situation in wavelet domain, the HR 
image is down-sampled via Daubechies 4 wavelet transform 
[26]. After getting the LR image, step one is to interpolate the 
LR image by the NEDI. Step two is to use the Bicubic to 
calculate pixels at ground-truth positions by using pixels 
obtained from step one and the LR pixels to resolve the pixel 
shift problem. Step three is to perform wavelet transform on 
the image obtained from step two to get LL, LH, HL and HH 
parts. Making use of LH, HL and HH with the LR image, we 
can perform inverse wavelet transform to obtain the HR image. 

The major contribution of this work can be summarized 
into two points. (1) We propose the Shift-Free NEDI (SF-
NEDI) which resolves the pixel shift problem caused by 
wavelet down-sampling. The PSNR of image up-sampling by 
the SF-NEDI is 0.31 dB better than the SF-Bicublic (SF-
Bicubic) and 0.541 better than the NEDI. (2) Since the LR 
image is the wavelet transformed version of the original image. 
The resultant enlarged image obtained from SF_NEDI fixes 
the pixel shift but it calculates the high frequency information 
based on wavelet transformed version pixels. To further 
improve the spatial quality of the HR image, we improves the 
super-resolution performance by using the DWT to extract the 
high frequency information from the shift-free NEDI up-
sampled image and combine it with the true wavelet down-
sampled LR image as low frequency component to perform 
the inverse DWT to reconstruct HR image. The PSNR of the 
final image is on average 1.35 dB better than image up-
sampled by SF-NEDI. 

The rest of the paper is organized as follows: Section 2 
gives the formulation of wavelet domain super-resolution and 
the proposed improvements. Section 3 presents the 
experimental results and section 4 concludes the paper. 

II. HYBRID NEDI-WAVELET BASED SCHEME 

A. DWT-based down-sampling 

There are many wavelets and scaling functions [26] 
available to be selected to perform wavelet transform. The 
simplest one is the Haar wavelet which only needs two 
coefficients for low-pass filter and high-pass filter. From tests, 
we find that the Haar wavelet down-sampling is similar to 
down-sampling by averaging. Its ability of saving low 
frequency information is not as good as Daubechies 4 wavelet. 
Besides, using Daubechies 4 wavelet, its 4-coefficients of the 
low/high filters overlap every two HR pixels, such that LR 

pixels contain correlation information. In the spatial domain, 
let us denote X(nxn) as the low-resolution (LR) image, 
Y(2nx2n) as the high-resolution (HR) image, 
Y’((2n+2)x(2n+2)) as the boundary extension version of Y 
and L(nx(2n+2)) as the low-pass filter matrix. The down-
sampling process can be explained in matrix equation as 
follows 

1
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  (2) 

Equation (2) shows the relationship between one LR pixel x 
and HR pixel y, x is correlated with nearest y by low-pass 
filter coefficients. Since the discrete wavelet transform 
samples every two data, each LR pixel can be considered at 
the center of nearest four HR pixels. This gives us the idea 
how pixel shift happens in DWT down-sampling. 

B. DWT Zero-Padding  

Let us use figure 1 to illustrate the DWT Zero-padding 
(WZP)process. Assume that the LR image down-sampled by 
the wavelet transform is available in the spatial domain. Let us 
multiple the LR image by 2 and pad zeros at LH, HL and HH 
components. The combined block is then performed inverse 
DWT transformed to obtain the HR image in the spatial 
domain. 

 

Figure 1. DWT zero-padding process 

 

C. Shift-free NEDI method to solving pixel shift 

NEDI [7] makes use of the geometric duality property to 

estimate HR covariance by LR covariance and interpolates the 

HR pixels using estimated covariance. 

 

 
Figure 2. Spatial coordinates of the LR pixels 

 

To use the down-sampled DWT image, let us check the 

pixel shift caused by DWT down-sampling in figure 2. Each 
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LR pixel is the sum of weighted nearest 4 4 HR pixels. After 

using NEDI to perform interpolation, we get the enlarged 

image in figure 3, where ▲ is the estimated NEDI pixel. Note 

that each estimated NEDI pixel has shifted from original HR 

pixel coordinates. This shift affects the whole image with 

serious errors. In order to eliminate this shift effect, we make 

use of the Bicubic [3] approach again to interpolate the pixel 

values in the original positions (the grey dots (pixels) in Fig.4). 

For example, pixel x is obtained by making use of its nearest 

4 4 available pixels, including 12 estimated NEDI pixels and 

4 LR pixels in the square window of figure 4. 

 
Figure 3. Spatial coordinates of the LR and NEDI pixels 

 

 
Figure 4. Spatial coordinates of the LR, NEDI and Bicubic 

pixels 

 

To make a comparison, let us perform the Bicubic method to 

compare with the NEDI. Making arrangement the same as SF-

NEDI, the LR image is also assumed to be obtained from 

performing DWT on the HR image. 

To enlarge the LR image, there are two steps. (i) Step one 

is to perform the Bicubic interpolation, which is to obtain the 

step one Bicubic pixels (   ) as shown in figure 5. (ii) Step two 

is the pixel shift correction stage, which performs Bicubic 

interpolation again, using LR pixels and step one Bicubic 

interpolated pixels in the square bracket as shown in figure 6. 

Note that both step one and step two have to perform the 

Bicubic method, but they evaluate pixels at different positions. 

To illustrate the improvement after solving the pixel shift 

problem, TABLE 1 shows the comparison between Bicubic, 

NEDI and their shift free methods. The improvement of PSNR  

is outstanding which leads us to take its advantage to improve 

reconstructon quality further. 

D. Hybrid NEDI-wavelet-based Scheme 

     Using SF-NEDI instead of the NEDI to do super-resolution 

can improve the quality of HR image. However, NEDI works 

 
Figure 5. Spatial coordinates of the LR and step one Bicubic 

pixels 

 

 
Figure 6. Spatial coordinates of the LR, step one Bicubic and 

step two Bicubic pixels 

 

 
Figure 7.Hybrid Wiener-wavelet-based scheme 

 

well in direct down-sampling for interpolation processing 

because it forms the right HR covariances by making use of 

the position matched LR covariances. 

The fact for direct down-sampling methods is that it 

keeps one quarter of the original HR pixels as LR pixels, the 

rest of missing pixels are obtained based on known LR pixels. 

On the contrary, the initial step of SF-NEDI estimates missing 

pixels based on the result of wavelet down-sampled LR image 

so that the NEDI estimated pixels only reflect correlation 

between down-sampled LR pixels. It can represent the 

covariance of the wavelet version of the HR pixels instead of 

the HR pixels in the spatial domain. The same situation works 

for the shift-free Bicubic (SF-Bicubic). This can explain why 

the PSNR of DWT zero-padding is higher than that of the SF-

NEDI and SF-Bicubic. To further improve reconstruction 

quality, let us modify the model brought out in [21] and [29] 

to combine the result of the SF-NEDI or the SF-Bicublic with 

DWT transform. The process is illustrated in figure 7.  Step 

one uses the SF-NEDI or the SF-Bicublic to up-sample the LR 
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image to get the enlarged image. Step two performs DWT to 

the enlarged image to get LL, LH, HL and HH parts, and then 

combines the LR image multiplied by 2 with LH, HL and HH 

parts of the enlarged image in the wavelet domain. Step three 

performs the inverse DWT to combined image to get the HR 

image. 

III. EXPERIMENTAL RESULTS 

To evaluate the proposed approach, 16 images 

(512 512) with various contents have been selected for 

testing. Figure 8 shows the gray level test images. Table 1 

shows the PSNR (dB) comparison with different algorithms 

[3], [7] and [28] for 2 2 up-sampling. To eliminate the error 

around boundaries, the PSNR calculation range is from 4 to 

509 instead of 1 to 512. 

 
Figure 8. 16 testing images 

In order to show the advantage after resolving the pixel 

shift, we use the Bicubic and NEDI to compare with our novel 

shift-free schemes for 2 2  super-resolution. From TABLE 1, 

the PSNR of SF-Bicubic is 0.35 dB better than the Bicubic. 

The PSNR of SF-NEDI is 0.54 dB better than the NEDI. It is 

interesting to note that SF-Bicublic is better than SF-NEDI 

which is similar to the case in direct down-sampling situation 

where using Bicubic to do interpolation is better than NEDI. 

For the Hybrid wavelet based scheme, there are few proper 

methods to compare with since our LR image obtained from 

the wavelet down-sampling and [24], [25], [28] and [29] use 

the wavelet based methods to enhance resolution without 

enlarging the size of the LR image. Only [27] can be used to 

compare with our methods. We use DWT Zero-padding, 

WZP-CS and the hybrid wavelet based scheme to do the same 

2 2  super-resolution. For DWT Zero-padding, though we 

used the original low frequency information obtained from HR 

image, the high frequency components are filled with zeros. It 

does not help to recover the edges and textures. For WZP-CS, 

based on [27], when k=2 phase shifts can achieve a higher 

PSNR so that in TABLE 2, we can see the slight improvement 

of PSNR compared with DWT Zero-padding. For Hybrid 

scheme with DWT transform, it helps to transform the high  

TABLE 1. PSNR OF 16 TESTING IMAGES WITH DIFFERENT 

ALGORITHMS WITH PIXEL SHIFT RESOLVED 

 
TABLE 2. THE PSNR OF 16 TESTING IMAGES WITH DIFFERENT 

ALGORITHMS WITH SOLVING PIXEL SHIFT 

Images 
DWT zero-

padding 

WZP-

CS[27] 

Shift Free 

Bicubic-

wavelet-

based 

method 

Shift-free 

NEDI-

wavelet-

based 

method 

Lena 33.859 34.231 34.888 35.194 

Baboon 24.139 23.874 24.266 24.429 

Bicycle 21.491 21.202 21.685 22.211 

Boat 29.940 30.033 30.504 30.675 

Pepper 33.513 33.693 34.201 34.478 

Goldhill 31.477 31.400 31.770 31.818 

Couple 29.774 29.723 30.302 30.435 

Stream 26.747 26.640 27.068 27.038 

Splash 37.243 37.585 38.119 38.322 

Man 29.085 29.051 29.591 29.689 

Airplane  33.140 33.678 34.521 34.362 

Bridge 34.779 34.828 35.331 35.465 

Cart 28.703 28.916 29.544 29.770 

Church 28.812 28.807 29.313 29.160 

Flin 31.980 32.040 32.588 32.574 

Owl 29.021 29.112 29.538 29.533 

Average 

PSNR 
30.232 30.301 30.827 30.947 

Improvement - 0.069 0.595 0.715 

Images Bicubic[3] 
Shift-Free 

Bicubic 
NEDI[7] 

Shift-free-

NEDI 

Lena 32.645 33.572 32.184 33.360 

Baboon 23.783 23.716 23.502 23.608 

Bicycle 21.019 21.035 21.244 21.282 

Boat 29.339 29.613 29.827 29.354 

Pepper 32.357 33.220 31.816 33.100 

Goldhill 30.857 31.058 30.273 30.713 

Couple 29.179 29.392 28.605 29.142 

Stream 26.275 26.364 25.542 25.947 

Splash 35.999 36.969 35.669 36.787 

Man 28.485 28.715 27.948 28.385 

Airplane  32.120 33.045 31.037 32.179 

Bridge 34.465 34.469 33.909 34.201 

Cart 28.174 28.471 27.539 28.211 

Church 28.373 28.374 27.304 27.747 

Flin 31.475 31.727 30.787 31.228 

Owl 28.427 28.753 27.694 28.292 

Average 

PSNR 
29.561 29.906 29.055 29.596 

Improvement - 0.345 - 0.541 
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frequency information obtained from SF-NEDI and SF-

Bicubic in wavelet domain instead of spatial domain so that 

they can be used with the LR image to perform inverse 

wavelet transform. This improvement does not require too 

much computation cost or complicated algorithms so that this 

is an easy way to get better visual quality in practice. From 

Table 2, The PSNR of the WZP-CS improves very little but it 

helps to reduce the ringing artifacts. The PSNR of the Hybrid 

SF-Bicublic-wavelet-based scheme is 0.595 dB better than 

that of the DWT zero-padding, the Hybrid SF-NEDI scheme is 

0.715 dB better than that of the WZP. These comparisons 

prove that using the shift-free schemes can help to evaluate 

useful high frequency information from the spatial 

interpolation methods to up-sample the LR images. Besides, 

using Hybrid SF-Bicublic-wavelet-based method is very 

similar to Hybrid SF-NEDI-wavelet-based method. Checking 

their differences between images, we find that for images with 

more edges or textures, the Hybrid SF-NEDI-wavelet-based 

method can improve the PSNR better than Hybrid SF-

Bicublic-wavelet-based method. An explanation is that the 

NEDI evaluates the missing pixels by geometry duality. It can 

help to improve visual quality by reconstructing some curves 

and edges but the PSNR is no better than the Bicubic. For 

images with more edges and textures, using NEDI could 

evaluate more ground truth high frequency information so that 

when we perform wavelet transform to extract the high 

frequency parts LH, HL and HH, they would not degrade the 

image quality. On the contrary, for smoother images, like 

Bridge, using SF-Bicublic can improve the overall PSNR so 

that when we perform wavelet transform, the results are better 

than Hybrid SF-NEDI-wavelet-based method. In figure 9, it 

gives more visual details on comparing different methods for 

super-resolution. From this figure, DWT Zero-padding is 

blurring because of the loss of high frequency information. 

WZP-CS helps to reduce the ringing artifacts of WZP but also 

blurs the image. Compared to the SF-Bicubic, the SF-NEDI 

manages to reconstruct the edges and high frequency 

information. Using the proposed scheme, these blurring and 

noising effects are eliminated to some extents in visual 

observation. The results confirm the idea that using the SF-

NEDI can improve the quality of image and using the Hybrid 

SF-NEDI-wavelet-based super-resolution is the best choice 

overall.  

IV. CONCLUSION 

A Hybrid-NEDI-wavelet-based scheme is proposed for 
image super-resolution. This paper discusses the pixel shift 
happening during the wavelet down-sampling. By resolving 
this problem, the NEDI can be effectively applied into image 
super-resolution. Besides, combining high frequency 
information from the shift-free-NEDI up-sampled image with 
the original LR image by performing the wavelet transform 
gives us more promising results. This hybrid approach is 
extremely useful for scalable image/video coding using the 
wavelet transform, for which the LR image is used as the base 
layer, whereas LH, HL and HH blocks obtained by making 
use of the discrete wavelet transform results of the spatially 
interpolated LR image (plus the required amount of residual 
signals) can form the enhancement layer. Details of the 

scalable coding making use of this approach is part of our 
future work. Furthermore, we may also resolve the problem of 
pixel shift by other methods as a further investigation. Quality 
of the LR image can also be improved for super-resolution by 
using an iterative scheme. Another direction is to use other 
wavelet functions instead of Daubechies 4 to do down-
sampling and up-sampling. 
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(a) DWT Zero-padding               (b) WZP-CS                     (c) SF-Bicubic               

  
(d) SF-NEDI              (e) SF-Bicubic-wavelet     (f) SF-NEDI-wavelet                 

  
(g) DWT Zero-padding            (h) WZP-CS                      (i) SF-Bicubic          

  
(j) SF-NEDI                 (k) SF-Bicubic-wavelet        (l) SF-NEDI-wavelet    

  
(m) DWT zero-padding           (n) WZP-CS                   (o) SF-Bicubic              
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       (p) SF-NEDI               (q) SF-Bicubic-wavelet      (r) SF-NEDI-wavelet                 

 

Figure 9. Subjective comparison of different methods 
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