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Abstract—Chinese traditional opera plays an important role
in Chinese traditional culture, it reflects the customs and value
tendency of different areas. Though researchers have already
gained some achievements, studies on this field are scarce and
the existing achievements still need to be improved. This paper
proposes a system based on multi-feature fusion and extreme
learning machine (ELM) to classify Chinese traditional opera
genre. Inspired by music genre classification, each aria is split
into multiple segments. 19 features are then extracted and fused
to generate the fusion feature. Finally, we use ELM and majority
voting methods to determine the genre of the whole aria. The
research data are 800 arias of 8 typical genres collected from
Internet. This system achieves a mean classification accuracy
of 92% among 8 famous Chinese traditional opera genres.
The experimental results demonstrated that multi-feature fusion
improves classification accuracy of Chinese traditional opera
genres. Feature fusion is more effective than decision fusion in
dealing with this problem.

I. INTRODUCTION

Chinese traditional operas originate from folk songs and
dances. It is a comprehensive art form consisting of mu-
sic, dance, fine arts, Chinese martial arts, acrobatics, etc.
Almost all kinds of operas are based on the same Chinese
history, literature and popular legend. However, differences of
geographic location, language and customs cause variety of
vocal and pronunciation systems. According to the statistics,
China has more than 360 opera genres and tens of thousands
traditional theatrical pieces [1]. However, it has caused a huge
culture barrier between Chinese traditional operas and modern
audience. Some operas are even on the verge of disappearing.
Meanwhile, there exists little research on Chinese traditional
opera using modern science and technology [2], [3], [4].
Therefore, it is important to promote the development of
Chinese Opera in particular by computer technique.

Modern music has been studied for years [5], [6]. Jiang et
al. constructed a feature based on spectrum contrast which
was suitable for music classification [6]. It considered the
distribution of spectrum peaks and valleys in each sub-band

and can distinguish harmonic and noise components better.
James Bergstra et al., used ADABOOST to select from a
set of audio features and then aggregated. They demonstrated
that the technique of classifying features aggregated over
segments of audio is better than classifying the whole song
or individual short-timescale features [7]. Chang-Hsing Lee
et al., used modulation analysis to capture the time-varying
or rhythmic information of music signals [8]. Yin-Fu Huang
et al., used a self-adaptive harmony search algorithm to select
the most relative features with lower dimension, their methods
improved the classification accuracy effectively [9]. However,
there was little research on Chinese traditional operas. In
recent years, many operas, such as Peking Opera, have been
listed as China’s intangible cultural heritage [10]. Chinese
traditional operas aroused great attention among researchers
again. YI-BIN ZHANG et al., made a study of classification
and similarity analysis among 8 typical genres of Chinese
traditional operas and their classification accuracy reached
82.4% [4]. Ziqiang Zhang et al., combined the theory of
Peking opera with information technology to analyze opera
structure, the result fit human’s usual practice appropriately
[2]. Sundberg et al., studied the acoustic characteristics of
different kinds of opera performers (Sheng, Dan, Jing, Chou)
in classical opera singing [3]. They found that the voice
timbres in these roles differ dramatically from those in Western
operas.

This paper aims to build a system to classify 8 typical
Chinese traditional opera genres (Jin opera, Peking opera, Qin
opera, Henan opera, Shao opera, Cantonese opera, Zhuizi,
Kunqu). As presented above, segment level features are better
than song level or short-time scale features, we split each aria
into multiple segments. 19 features are then extracted to form
the original data set. Since single feature is not enough to
represent an aria, we adopt decision fusion and feature fusion
respectively [11]. Considering the high dimension of fusion
feature, ELM is selected as the classifier for its fast speed
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[12]. Finally, majority voting methods are used to calculate the
genre of each aria. The experimental results demenstrated that
multiple-feature fusion improves the classification accuracy
in Chinese opera genre classification. Our system achieves a
mean accuracy of 92% through feature fusion, which is more
effective than that using decision fusion.

The rest of this paper is structured as follows. Section II
introduces the system overview. Section III describes feature
extraction in details. Section IV deals with the process of
information fusion. Section V compares ELM with three other
classification algorithms. Section VI gives the experimental
results. Section VII discusses the experimental results. Finally,
Section VIII is the conclusion.

II. SYSTEM OVERVIEW

As presented in Fig. 1, the system architechture consists
of five components: aria partition, feature extraction, feature
fusion, classification and majority voting. The details are as
follows.

A. Aria partition

Each aria is split into multiple segments evenly with half
overlapping and each segment corresponds to a texture window
[5]. Predicting the genre of an aria is then transformed from
the whole aria to each segment.

B. Feature extraction

In order to recognize the genre of a segment, multiple
features are extracted from audio segment to analyze the
signals. Analysis window and texture window are proposed
to describe audio signals [5]. For analysis window, audio
signals are split into many short frames (20∼30ms) and each
frame is processed respectively. Since the characteristics of
audio signals in analysis window are relatively stable, it is
necessary to extract short-time feature in analysis window.
Texture window captures the variation of multiple consecutive
analysis windows. The actual texture window features used
in this system are the means and variances of the extracted
features over a number of analysis windows. As presented
in Table I, this paper extracts 19 texture window features to
capture the time-varying information, such as octave-based
spectral contrast (OSC) [6], normalized audio spectral en-
velope (NASE) [13], [14], spectral pitch chroma [15], Mel
frequency cepstrum coefficients (MFCCs) [16], etc.

C. Feature fusion

Considering the complementary information and the rela-
tionship among different features, 19 kinds of texture window
features are normalized firstly and then combined together to
form the fusion feature.

D. Classification

The dimension of the fusion feature vector is high. Di-
mension reduction algorithms usually lost useful information.
We select ELM as the classifier of this system because of its
extremely fast speed. [12].

TABLE I
TEXTURE WINDOW FEATURE SET

No. Descriptor Dimession Type
1 Time zero crossing rate 2

Time domain
features

2 Time autocorrelation coefficent 2
3 Time max autocorrelation 2
4 Time peak envelope 4
5 Time predictivity ratio 2
6 Time standard deviation 2
7 OSC 32

Frequency
domain features

8 MFCCs 52
9 NASE 38
10 OMSC 32
11 MSFM-MSCM 16
12 Spectral pitch chroma 24
13 Spectral crest 2
14 Spectral slope 2
15 Spectral decrease 2
16 Spectral flatness 2
17 Spectral centroid 2
18 Spectrul rolloff 2
19 Spectral flux 2

E. Majority voting

As mentioned above, an aria is split into multiple segments
and ELM only predicts the genre of each segment. Therefore,
majority voting is applied to determine the genre of the whole
aria.

III. FEATURE EXTRACTION

The Chinese opera singing is so flexible that single feature is
difficult to describe an opera effectively. In order to represent
audio signals more comprehensively from different perspec-
tives, this paper extracts multiple features and combines with
information fusion technique. The original feature sets are
shown in Table I.

In general, audio signals are studied in two ways: time
domain and frequency domain. In time domain, the strength
of sampling signals varies via time axis. In frequency domain,
each amplitude sample is transformed from time domain to
frequency domain by discrete Fourier transform (DFT).

A. Time Domain Features

In this paper, 6 time domain features are extracted.
1) Zero crossing rate: Zero crossing rate describes the ratio

of sign-changes in audio signals.
2) Time autocorrelation: Time autocorrelation coefficient

tries to find the fundamental frequency and the period of audio
signal.

3) Time max autocorrelation: Max autocorrelation de-
scribes the max value of audio signals’ autocorrelation func-
tion.

4) Time peak envelope: Peak envelope estimates 2 kinds of
envelope peak value.

5) Time predictivity ratio: Predictivity ratio is obtained by
calculating the linear prediction coefficients.

6) Time standard deviation: Standard deviation of audio
signals.
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Fig. 1. System overview. Segment i corresponds with the ith texture window of an aria. FFi is the fusion feature of the ith Segment. Prediction i indicates
which genre the ith segment belongs to.

B. Frequency Domain Features

Comparing with time domain, frequency feature is more
suitable to human auditory mechanism. Researchers com-
monly analyse the frequency content through transforming
signals from time domain to frequency domain. In this paper,
13 frequency features are selected to describe the frequency
characteristics.

1) Octave-based Spectral Contrast: Generally, the strong
spectrum peaks roughly correspond with harmonic compo-
nents, while noise often appears at valleys. Based on this point,
Jiang et al., proposed a feature (OSC) to describe the relative
distribution of spectrum peaks and valleys in each sub-band
[6].

2) Mel frequency cepstrum coefficients: As is shown in
Fig. 2, there are some differences between MFCCs and OSC.
MFCCs use Mel-scale filters and emphasize on the average
spectrum distribution instead of peaks and valleys in each sub-
band [6]. Therefore, MFCCs and OSC are complementary in
theory.

3) Normalized Audio Spectral Envelope: NASE [13], [14]
is proposed by MPEG-7 audio group for obtaining a low-
complex description of audio content. It is derived by nor-
malizing each audio spectral envelope coefficient and mainly
used for audio classification.

4) Modulation Spectral measures: Modulation spectrum
describes the time-varying and rhythm information of music
signals [17], [18]. This paper selects four modulation features:
Octave-based modulation spectral contrast (OMSC), modula-
tion spectral flatness measure (MSFM) and modulation spec-
tral crest measure (MSCM). They are derived from modulation

Fig. 2. Comparison of extraction process of OSC and MFCCs. For each sub-
band, OSC considers spectrum peaks and valleys, while MFCCs emphasizes
on spectrum average distribution.

analysis of OSC, spectral flatness measure (SFM) and spectral
crest measure (SCM). Therefore, OMSC, MSFM and MSCM
capture the variation of OSC, SFM and SCM respectively [18],
[19].

5) Spectral Pitch Chroma: The key or scale information
of music segment can provide important clues to music
information retrieval [20], and spectral pitch chroma is just
a measure describing key information of an aria.

6) Other Spectral measures: Spectral crest computes the
ratio of max energy and root mean square of energy, it is
usually used to distinguish noise and harmonic sound. Spectral
slope computes the amount of decreasing of the spectrum
amplitude through linear regression. Similar to spectral slope,
spectral decrease is another measure describing the decreas-
ing rate of spectral amplitude. Spectral flatness reflects the
flatness properties of the power spectrum through dividing
the geometric mean by the arithmetic mean of the power
spectrum. Spectrum centroid calculates the ”center of gravity”,
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Fig. 3. Information fusion process. Fi is the ith feature, AU is short for
analysis unit, FF represents fusion feature, Di is the ith decision from the
classifier and wi is the weight of the ith information source. (a) decision
fusion, (b) feature fusion.

it represents the ”brightness” of sound intuitively. Spectral
roll-off refers to a frequency threshold that 95% of signal
energy is below this point, it roughly represents the cutting
frequency between noise and harmony [21]. Finally, spectral
flux estimates the distance between two consecutive frames
(analysis window) of audio signals.

19 features consider different aspects and give different
classification results. Feature classification accuracy between
2 operas is shown in Table II.

IV. INFORMATION FUSION

When there is a variety of information sources, the most
common approach is to fuse multiple information [11], [22],
[23] through decision fusion and feature fusion (Fig. 3).

A. Decision Fusion

In decision fusion, a decision is the output of an analysis
unit. In this paper, a decision is defined as each classifier’s
output, i.e., the probability vector Ps = [p1, . . . , pi, . . . , pN ],
where i represents a specific opera genre index and Ps

corresponds with the sth decsion [24]. Linear weighted fusion
methods are used to combine different decisions with different
weights by sum operators (Fig. 3 (a)) as follows:

P =
N∑
i=1

wi × Pi (1)

where Pi is the probability vector obtained from the ith
decision and wi is the corresponding weight. Therefore, the
testing sample x will be classified as class Ci if pi is the
maximum in P .

However, how to assign reasonable weight to each decision
is the key point of linear weighted fusion. In this paper,
harmonic search algorithm, simulating the process of playing
music, is used to search an optimum weights vector heuristical-
ly. The HS algorithm mimics the behaviors of music players

Fig. 4. Procedure of decision fusion with harmony search. HM represents the
harmony memory matrix. Di is the ith decision from the ith feature Fi with
the corresponding weight wi. Fusion decision is derived by linear weighted
fusion methods as in (1).

in an improvisation process, where each player generates a
pitch with each instrument based on three operations: random
selection, memory consideration, and pitch adjustment [25].
The general procedures of an HS are as follows.

• Step 1. Create and randomly initialize an HMS-size
harmony memory (HM).

• Step 2. Improvise a new harmony from the HM.
• Step 3. Update the HM. If the new harmony is better than

the worst harmony in the HM, include the new harmony
in the HM, and exclude the worst harmony from the HM.

• Step 4. Repeat Steps 2 and 3 until the maximum number
of iterations is reached.

Therefore, the procedure of weight adjusting combining
harmony search in decision fusion is shown in Fig. 4. The
raw data set is divided into three parts (training set, validation
set and test set) with the proportion of 8:1:1. The error
rate of classification is used as the objective function, other
parameters of HS are shown in Table III.

As is shown in Fig. 5, some weak features with low
dimension usually give bad determination alone, decision
fusion with 19 features only gains an average accuracy of
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TABLE II
FEATURE CLASSIFICATION ACCURACY BETWEEN 2 OPERAS

Operas
Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Jin&Jing 45.5 66.0 73.0 56.5 56.0 58.0 83.5 79.0 89.0 85.5 77.5 89.0 49.5 58.5 50.5 53.0 50.0 50.0 52.0
Jin&Qin 56.0 58.5 63.0 44.5 56.0 49.0 89.5 66.5 89.5 82.0 79.5 85.5 50.5 57.5 45.5 47.5 50.0 50.0 40.0
Jin&Yu 46.5 52.0 83.0 62.0 61.0 60.5 93.0 79.5 89.0 77.0 81.0 95.5 57.5 65.5 49.5 61.5 50.0 44.0 61.0

Jin&Shao 53.0 71.0 78.0 57.0 58.5 57.5 92.0 75.5 91.0 88.0 76.0 87.0 63.0 53.5 50.0 49.0 50.0 50.0 51.5
Jin&Cantonese 54.0 63.0 71.0 50.5 66.0 55.0 85.0 82.0 94.0 91.0 90.5 93.5 50.0 54.0 49.5 57.5 50.0 87.0 62.0

Jin&Zhui 50.5 86.0 70.0 60.5 74.5 64.0 97.5 86.5 96.5 94.0 94.5 94.5 61.5 65.0 49.5 56.5 50.0 72.5 47.0
Jin&Kun 49.5 90.0 70.0 89.5 76.5 86.0 98.0 88.0 99.0 94.0 94.0 95.0 69.5 84.5 51.0 77.5 49.5 88.5 82.5
Jing&Qin 53.5 67.5 68.5 55.0 57.5 57.5 93.5 74.5 94.0 90.0 91.0 85.5 61.0 56.0 49.5 57.5 50.0 50.0 52.5
Jing&Yu 51.0 57.0 61.5 64.5 61.5 66.0 83.5 71.5 85.0 78.0 78.5 80.0 65.5 68.5 49.5 66.5 50.0 50.0 66.0

Jing&Shao 52.5 61.0 60.5 43.5 51.5 52.5 77.5 76.0 84.5 72.0 76.0 79.5 64.5 45.0 50.0 46.5 50.0 50.0 51.0
Jing&Cantonese 54.5 60.5 77.0 48.0 57.5 61.0 91.5 70.0 90.5 85.0 92.0 78.0 55.0 60.0 48.5 59.5 50.0 63.0 58.0

Jing&Zhui 50.5 76.0 63.5 59.5 63.0 56.0 89.0 85.5 92.5 86.5 85.5 83.5 62.5 55.5 45.5 58.0 50.0 50.0 59.0
Jing&Kun 56.5 72.5 88.0 83.5 68.5 79.0 96.5 89.0 93.5 87.0 92.0 87.0 75.0 80.0 49.5 76.5 50.0 50.0 81.0
Qin&Yu 42.0 56.5 75.0 61.0 55.0 60.0 83.0 73.0 80.5 77.5 88.5 90.0 59.5 59.5 49.5 56.5 50.0 47.0 59.0

Qin&Shao 50.5 69.0 77.5 57.0 61.0 52.0 90.5 76.0 88.5 84.5 85.5 88.0 67.0 52.0 50.0 53.5 50.0 45.0 51.0
Qin&Cantonese 53.5 66.5 61.0 52.0 67.5 60.5 90.0 78.5 91.5 80.5 86.0 90.5 56.0 57.5 51.0 62.5 50.0 50.0 62.5

Qin&Zhui 51.0 83.5 68.0 56.0 75.0 62.0 84.5 87.0 93.0 94.0 95.0 91.0 66.0 57.0 45.0 51.0 46.5 48.5 51.0
Qin&Kun 55.0 77.5 84.0 84.5 80.0 83.0 96.5 87.5 95.0 90.5 93.5 94.0 72.0 86.0 53.5 75.0 50.0 50.0 81.5
Yu&Shao 50.0 38.0 74.5 64.0 60.0 61.5 79.5 74.0 84.5 74.0 87.0 85.5 73.0 61.5 48.0 63.5 50.0 50.0 65.0

Yu&Cantonese 49.5 51.5 81.0 64.5 69.5 68.5 91.5 80.0 91.0 85.0 94.0 86.0 65.5 66.0 58.5 72.5 45.0 50.5 74.0
Yu&Zhui 52.5 81.5 77.0 63.5 71.0 62.5 93.0 83.5 94.0 90.0 87.0 86.0 73.0 64.0 49.0 60.0 50.0 58.0 62.5
Yu&Kun 53.0 83.0 94.5 91.5 84.5 91.5 98.5 91.5 95.5 94.5 96.5 92.5 84.0 92.5 50.0 86.0 50.0 52.5 93.5

Shao&Cantonese 48.5 74.5 87.0 52.5 60.0 57.5 88.0 78.5 90.5 81.0 91.0 82.5 68.0 46.5 48.5 61.0 50.0 50.0 57.0
Shao&Zhui 51.5 75.5 71.5 51.0 70.0 50.0 87.5 85.5 90.0 82.0 87.5 87.0 55.5 57.5 51.0 46.5 50.0 49.0 53.5
Shao&Kun 59.0 69.5 85.0 82.0 71.0 79.0 96.0 87.5 90.5 86.5 82.5 84.0 73.5 81.0 50.0 76.0 50.0 50.0 78.5

Cantonese&Zhui 58.0 74.5 79.0 51.5 71.0 65.0 94.5 88.0 94.5 94.0 95.0 86.0 56.5 61.0 50.0 65.5 50.0 50.0 65.5
Cantonese&Kun 55.5 75.5 89.0 86.0 51.0 84.5 94.0 87.0 91.0 88.5 93.0 88.0 68.5 88.0 61.5 72.5 50.0 50.0 81.5

Zhui&Kun 52.5 46.5 89.0 84.5 77.5 82.0 97.5 95.0 88.0 90.5 96.0 88.0 65.5 82.5 50.0 82.5 50.0 50.0 76.5
Note: number i represents the ith feature displayed in Table I.

86.3% (Table IV). Therefore, we only select OSC, MFCCs,
NASE, OMSC, MSFM-MSCF and spectral pitch chroma as
six information sources. Finally, the classification accuracy of
Chinese opera genre reaches 89.3%.

B. Feature Fusion

Besides decision fusion, feature fusion is also performed
(Fig. 3 (b)). Compared with decision fusion strategy, a huge
advantage of feature fusion is that it considers the correlation
among multiple features. Generally, there are two techniques
of feature fusion: serial combination and parallel combination
[26]. If m and n are the weights of two features α and β, then
fusion feature will be transformed into [m ∗α;n ∗β] by serial
combination. In parallel combination, two real features will be
transformed into a complex feature and the absolute value of
the complex is regraded as the final fusion feature. In most
of the case, weights are adjusted manually or all the features
are given the same weight [27]. Though some low dimension
features give bad determination, they provide supplementary

TABLE III
PARAMETERS OF HARMONIC SEARCH ALGORITHM

Parameters Values
Harmony memory size 20

Bandwidth 0.1
Harmony memory considering rate 0.9

Pitch adjustment rate 0.1
Iteration times 1000

information. In this paper, 19 normalized texture window
features are combined through serial fusion manner with equal
weights. As is shown in Fig. 5, fusion feature achieves better
classification accuracy than single feature apparently.

V. CLASSIFICATION

After extracting multiple texture window features and infor-
mation fusion, ELM is trained to classify 8 opera genres. It is
a supervised single-hidden layer feedforward neural networks
(SLFNs) with random hidden neurons and random feature
proposed by [12]. Most of the traditional neural networks
adopt gradient-based learning algorithms and the parameters
are tuned iteratively, therefore, their learning speed is in
general far slower than required. However, ELM calculates the
parameters without iteration. Therefore, an advantage of ELM
lies in its extremely fast speed and high classification accuracy.
Compared with traditional backpropagation (BP) neural net-
work, there exists no local minimum, time consuming or other
common problems in traditional BP algorithms. The dimension
of fusion feature is relatively high, a fast and accurate classifier

TABLE IV
COMPARISION OF FEATURES USED IN DECISION FUSION

Features Accuracy
19 features 86.3%

OSC, MFCCs, NASE, OMSC,
MSFM-MSCF, spectral pitch chroma

89.1%
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Fig. 5. Classification accuracy comparision of fusion feature and single feature.

is necessary, therefore, ELM is selected as the default classifier
in our experiment.

For a testing sample x, the basic ELM only outputs a
fuzzy vector O = [o1, o2, . . . , oN ], oi ∈ [−1, 1], where oi
indicates the degree of x belonging to class i. The fuzzy vector
is transformed into probability vector through the following
formulas [24].

oi = oi − (−1) (2)

pi =
oi∑N
i=1 oi

(3)

where pi is the probability of x belonging to class i.
In order to demonstrate the efficiency and accuracy of

ELM, three additional classifiers (SVM, random forest and
sparse representation classification) are tested. SVM [28] with
RBF kernel (gamma=0.25) achieves an accuracy of 91.2%,
but its speed is far slower than ELM. Random forest (RF)
[29] algorithm constructs a ”forest” by generating a number
of decision trees (500 trees in our experiment), each of
which plays a role in weak classifier and the final decision
is made by voting methods of multiple trees in the ”forest”.
Although sparse representation classification (SRC) has gained
much attention recently, the time and space complexities are
extremely high when solving large-scale problems [30]. As
shown in Table V, ELM achieves the highest classification
accuracy with the lowest time cost.

VI. EXPERIMENTS

A. Experimental Data
This paper collects 800 arias of 8 genres (Jin opera, Peking

opera, Qin opera, Henan opera, Shao opera, Cantonese opera,

TABLE V
THE DETAILS OF FOUR DIFFERENT CLASSIFIERS WITH FUSION FEATURE

Classifier Time cost
(Training +

Testing)

Accuracy

Extreme Learning Machine 100s 92.0%
SVM 1800s 91.2%

Random Forset 750s 83.8%
Sparse representation classification 6050s 85.4%

Zhuizi, Kunqu), and each opera genre contains 100 pieces of
arias. All of the audio samples are represented by extracting
the starting 30 seconds, the middle 30 seconds and the ending
30 seconds at sampling rate of 22050Hz. Frame length is 23ms
with half overlapping and texture window length is 9 seconds
with half overlapping.

B. Evaluation Methodology

The final classification accuracy of this system is obtained
by 10-fold cross-validation. The data set is randomly split into
10 subsets, 9 of which are selected as training set and the left
one is selected as testing set. Then repeat this process 10 times
until each subset is selected as the testing set for one time.
Repeat 10-fold cross-validation 10 times, the mean accuracy
is regarded as the final classification accuracy.

C. Confusion Matrix

Confusion matrix is a two-dimension matrix used to record
whether a test sample is classified correctly. Each row of
the matrix indicates the actual category of a testing sample
and each column indicates the theory category predicted by a
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TABLE VI
CONFUSION MATRIX OF CHINESE OPERA GENRE CLASSIFICATION

Jin Jing Qin Yu Shao Cantonese Zhui Kun
Jin 95 0 2 1 0 2 0 0

Jing 2 82 1 1 8 1 3 2
Qin 2 0 96 1 0 1 0 0
Yu 0 2 1 95 0 1 1 0

Shao 1 1 1 3 94 0 0 0
Cantonese 2 3 0 1 2 91 0 1

Zhui 0 1 2 3 4 1 88 1
Kun 0 0 0 0 0 0 0 100

classifier. For each row and column, opera genre is arranged in
the order of Jin opera, Peking opera, Qin opera, Henan opera,
Shao opera, Cantonese opera, Zhuizi, Kunqu. For example, the
5th row and the first column of Table VI shows that there is
only one piece of Shao Opera aria which is misclassified into
Jin Opera. The diagonal of the matrix displays the number of
arias that are correctly classified.

Therefore, the average classification accuracy of 10-fold
cross validation can be calculated as follows.

Accuracy =

∑N
i=1 datai,i∑N

i=1

∑N
j=1 datai,j

(4)

where datai,j lies in the ith row, jth column of the confusion
matrix.

VII. DISCUSSION

As presented in Fig. 5, fusion feature improves classification
accuracy in Chinese traditional opera genre classification. Dur-
ing decision fusion stage, some weak features with low dimen-
sion give very bad decisions (Fig. 5), which even decrease the
overall classification accuracy to 86.3% (Table IV). Therefore,
we only select 6 representative features (OSC, MFCCs, NASE,
OMSC, MSFM-MSCF and spectral pitch chroma) in decision
fusion which achieves an accuracy of 89.1%. Experimental
results show that if several weak features are removed away
from fusion feature, the mean classification accuracy always
decreases. We draw the conclusion that weak features provide
supplementary information instead of decision information.
Comparing with decision fusion, a huge advantage of feature
fusion is that it considers the relationship among different
features. Therefore, feature fusion achieves better classification
accuracy in this system.

VIII. CONCLUSIONS

This paper proposes an effective framework for Chinese
traditional opera genre classification based on multi-feature
fusion technique and extreme learning machine. Though most
features are commonly used in music and audio classification,
they are also effective in classifying Chinese opera genre.
Finally, our system reached a mean classification accuracy
of 92%. Chinese traditional operas have been famous for its
unique artistic charm among world culture. We are convinced
that it is a valuable artistic attempt to study Chinese operas
with computer technology.

For future work, we plan to improve this system from two
aspects. In order to gain real-time response, it is necessary
to explore lower dimension feature without decreasing the
classification accuracy of this system. What’s more, there are
massive opera resources on the Internet, therefore, it is also
suggested to research Chinese operas on large-scale data set.
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