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Abstract— In this paper, we propose an emotion-based feature 

fusion method using the Discriminant-Analysis of Canonical 

Correlations (DCC) for facial expression recognition. There have 

been many image features or descriptors proposed for facial 

expression recognition. For the different features, they may be 

more accurate for the recognition of different expressions. In our 

proposed method, four effective descriptors for facial expression 

representation, namely Local Binary Pattern (LBP), Local Phase 

Quantization (LPQ), Weber Local Descriptor (WLD), and 

Pyramid of Histogram of Oriented Gradients (PHOG), are 

considered. Supervised Locality Preserving Projection (SLPP) is 

applied to the respective features for dimensionality reduction 

and manifold learning. Experiments show that descriptors are 

also sensitive to the conditions of images, such as race, lighting, 

pose, etc. Thus, an adaptive descriptor selection algorithm is 

proposed, which determines the best two features for each 

expression class on a given training set. These two features are 

fused, so as to achieve a higher recognition rate for each 

expression. In our experiments, the JAFFE and BAUM-2 

databases are used, and experiment results show that the 

descriptor selection step increases the recognition rate up to 2%. 

I. INTRODUCTION 

Facial expression recognition (FER) is one of the most 

interesting topics in the field of human-computer interaction, 

and has become a popular research topic during the last few 

decades. Before training classifiers for recognizing facial 

expressions, feature extraction is performed from face images 

in order to extract the distinctive features which can 

distinguish the different expressions. 

The features used for FER can be divided into two 

categories: geometric-based and appearance-based methods. 

Geometric-based features benefit from the shape and location 

information of facial components such as the eyes, mouth and 

eyebrows, while appearance-based features contain changes 

in the skin texture such as wrinkles, bulges and furrows. To a 

certain extent, these two types of features are supplementary 

to each other. 

In this paper, four competent local descriptors are selected, 

and their performances for facial expression recognition are 

evaluated. These four descriptors are Local Binary Pattern 

(LBP) [1], Local Phase Quantization (LPQ) [2], Weber Local 

Descriptor (WLD) [3], and Pyramid of Histogram or Oriented 

Gradients (PHOG) [4], which have been used for facial 

expression recognition in the literature [5-8]. 

It can be seen that, from confusion matrices, different 

descriptors can achieve different recognition rates for a 

specific emotion. In the past, a single local descriptor was 

usually studied to achieve the best overall performance for all 

emotions. In this paper, we propose to identify the best two 

features for each expression, which are then fused to form a 

coherent feature for representing a particular expression. 

Manifold learning aims to embed high-dimensional data in 

a lower dimensional space while preserving the intrinsic 

characteristics. In [9], Shan et al. compared the performances 

of different manifold learning techniques on facial expression 

recognition, and showed that Supervised Locality Preserving 

Projections (SLPP) [10] achieves the best performance. More 

importantly, SLPP also considers the class information in the 

construction of the manifolds. 

According to [11], emotions can be classified into four 

basic classes: 1) Anger-Disgust (AN-DI), 2) Fear-Surprise 

(Fe-SU), 3) Sadness (SA), and 4) Happiness (HA). In a video 

sequence, the set of specific facial movements of a particular 

emotion does not occur at once but sequentially over time. In 

the early stages of anger or disgust, accurate discrimination 

between these two expressions is not obvious, similar to that 

between fear and surprise. Based on this, the number of 

expression classes is set at four, and the performances of the 

respective feature descriptors are measured for each of the 

expression classes. Then, the best two descriptors for each 

expression are identified and fused using Discriminant-

Analysis of Canonical Correlations (DCC) [12] to form a 

coherent feature set. Our aim is to find the best discriminant 

features by combining the different descriptors for 

recognizing each facial expression. To the best of our 

knowledge, we are the first to use different coherent 

descriptors for the recognition of different expressions. Based 

on the coherent features, a classifier is learned for each 

expression. In other words, four classifiers are learned for the 

four expressions, i.e. anger-disgust, fear-surprise, happiness, 

and sadness. 

The rest of this paper is organized as follows: The details of 

our proposed approach are presented in Section II. In Section 

III, experimental setup is described, and the experimental 

results are shown. Section IV concludes the paper. 

II. DETAILS OF OUR APPROACH 

Before extracting features, the faces are scaled and aligned 

based on the position of the eyes such that the distance 

between the two eyes is 64 pixels and the image size is 

126100 pixels. In order to obtain more effective facial 
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features, each image is divided into 86 regions, and 30 of the 

regions are used for feature extraction, as illustrated in Fig. 1. 

We can see that the selected regions contain the salient facial 

features, so they can represent facial expressions more 

effectively. After extracting the features, i.e. LBP, LPQ, 

PHOG, and WLD, supervised LPP is applied for manifold 

learning. 

In the rest of this section, first, the four descriptors, SLPP, 

and DCC, are explained in detail. Then, the process of 

evaluating the performance of each descriptor for each 

expression class is described. Finally, the proposed adaptive 

descriptor selection algorithm is presented. 

A. The Local Descriptors 

In this paper, four different local descriptors are considered, 

because: 1) they have been used widely for facial expression 

recognition, and 2) they represent facial expressions in terms 

of different aspects such as intensity, phase, and shape. 

The first descriptor used in our approach is Local Binary 

Pattern (LBP) [13], which was proposed as a texture 

descriptor. In LBP, the label for each pixel is represented as 

an 8-bit binary number by thresholding the 33 neighboring 

pixels with the center pixel value. The feature vector for the 

considering region is then represented using a 256-bin 

histogram. The advantage of LBP is that it is insensitive to 

monotonic variations caused by illumination changes. 

The second descriptor considered is Local Phase 

Quantization (LPQ) [2], which was also proposed as a texture 

descriptor. Unlike LBP, which uses intensity value, LPQ is 

based on the blur invariance property of the Fourier phase 

information with the assumption that the blur is centrally 

symmetric. LPQ computes the short-term Fourier transform at 

each pixel over a rectangular MM neighborhood. Using the 

local Fourier coefficients at four different frequencies, the 

phase information is recovered by using a scalar quantizer 

resulting in an 8-bit number, represented as a decimal number 

between 0 and 255. The distribution of the numbers is then 

represented using a histogram. 

An extension of the Histogram of Oriented Gradients 

(HOG) [14] descriptor, the Pyramid of Histogram of Oriented 

Gradients (PHOG) [4], is a descriptor commonly used for 

object recognition. PHOG represents an image using its local 

shape at different scales. The Canny edge detector is applied 

to an image, which is then divided into spatial cells based on 

the number of levels. At each pyramid level, the orientation 

gradients of the edge contours are calculated using the 33 

Sobel masks. The orientation gradients are represented by 

using a K-bin histogram followed by concatenation of the 

histograms of each level. The final feature vector is of 

dimension K×Σ4l, where l is the number of pyramid levels 

and K is the number of bins in the histograms. In our 

experiments, l and K are set at 2 and 8, respectively. 

Weber Local Descriptor (WLD), proposed by Chen et al. 

[3], is an image descriptor which is derived from the Weber’s 

Law, which states that human perception of change in a given 

stimulus also depends on the intensity of the original stimulus. 

According to this law, the change of a stimulus can be 

recognized if the ratio of the change to the original stimulus is 

larger than a certain value. WLD consists of two components: 

differential excitation and orientation. Differential excitation 

considers the ratio between the current pixel and the relative 

intensity differences against it. The second component, i.e. 

orientation, is the ratio between the vertical and horizontal 

gradients. Weber magnitude  and orientation  are defined 

as follows: 

, 
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Fig. 1   The emotion-based feature fusion scheme for facial expression recognition. 

(2) 
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where  denotes the center pixel and  is the neighboring 

pixels, where  as illustrated in Fig. 2. 

Weber magnitude  and orientation  are quantized and 

represented by using a 2D histogram. This histogram is then 

mapped to a 1D histogram to obtain the feature vector. 

B. Supervised Locality Preserving Projection (SLPP) 

Locality Preserving Projection (LPP) [15], which is a linear 

approximation of the nonlinear Laplacian Eigenmap [16], 

employs the following minimization problem: 

 

, 

 

where S = [sij] is the similarity matrix that preserves the local 

neighborhood information. An edge is added between nodes i 

and j if  and  are among the k nearest neighbors of each 

other. Heat kernel sets the edge weight sij as above if there is 

an edge between nodes i and j:  

 

, 

 

where t is the parameter for the method. An extension of LPP, 

namely supervised LPP [10], uses the class information when 

constructing the similarity matrix. In other words, an edge is 

added between nodes i and j if and only if  and  belong 

the same class and are among the k nearest neighbors of each 

other. 

C. Discriminant-Analysis of Canonical Correlations (DCC) 

Discriminant-Analysis of Canonical Correlations (DCC) 

[12] was proposed as a discriminative learning method by 

Kim et al., inspired by Linear Discriminant Analysis (LDA) 

[17] which has been used commonly for dimension reduction 

aiming to preserve the class discriminatory information. 

Similar to LDA, DCC seeks to find a transformation matrix W 

for two feature sets X and Y such that  and 

, where the matrix W maximizes the canonical 

correlations of the within-class sets, while minimizing the 

canonical correlations of the between-class sets. 

In this paper, DCC is applied to two different feature sets 

extracted using two different descriptors in order to fuse them 

in a manner that the transformed feature set will have the 

 

TABLE   III 

EXPERIMENT RESULTS FOR BAUM-2 + JAFFE DATABASE 
 

BAUM-2 

+ JAFFE LBP LPQ WLD PHOG 

AN-DI 
74.19% ± 

0.28% 
77.35% ± 

0.27% 

74.68% ± 

0.77% 
74.92% ± 

0.11% 

FE-SU 
82.21% ± 

0.25% 
82.59% ± 

0.08% 
83.24% ± 

0.19% 

83.26% ± 

0.56% 

HA 
89.92% ± 

0.28% 

90.08% ± 

0.20% 

88.99% ± 

0.27% 

88.62% ± 

0.26% 

SA 
84.55% ± 

0.28% 
86.50% ± 

0.32% 

84.84% ± 

0.85% 

84.66% ± 

0.18% 

ALL 
64.74% ± 

0.35% 
68.85% ± 

0.37% 

66.48% ± 

0.52% 

64.88% ± 

0.46% 

 

 

TABLE   II 
EXPERIMENT RESULTS FOR BAUM-2 DATASET 

 

BAUM-2 LBP LPQ WLD PHOG 

AN-DI 
73.92% ± 

0.93% 
76.96% ± 

0.28% 

74.98% ± 

0.37% 

70.16% ± 

0.35% 

FE-SU 
81.91% ± 

0.51% 
83.28% ± 

0.56% 

82.36% ± 

0.65% 

81.54% ± 

0.12% 

HA 88.37% ± 

0.54% 

89.82% ± 

0.46% 

88.25% ± 
0.25% 

87.48% ± 
0.36% 

SA 85.48% ± 

0.31% 

85.62% ± 

0.45% 

84.54% ± 
0.62% 

84.70% ± 
0.42% 

ALL 
62.85% ± 

0.62% 
66.71% ± 

0.56% 

63.35% ± 

0.48% 

59.86% ± 

0.39% 

 

 

 

Fig. 2   The mask used for WLD. 

 
(a) 

 

 
(b) 

 
Fig. 3   Sample images for (a) the JAFFE, and (b) the BAUM-2 databases. 

 

TABLE   I 
EXPERIMENT RESULTS FOR JAFFE DATABASE 

 

JAFFE LBP LPQ WLD PHOG 

AN-DI 90.49% ± 

1.84% 

85.79% ± 

2.97% 

89.51% ± 

0.90% 
95.85% ± 

0.49% 

FE-SU 
93.11% ± 

1.20% 

86.34% ± 

1.02% 
96.07% ± 

1.05% 

95.85% ± 

1.37% 

HA 
96.28% ± 

1.30% 

92.35% ± 

1.02% 

96.07% ± 

1.52% 
97.27% ± 

0.39% 

SA 91.04% ± 

1.48% 

88.09% ± 
0.81% 

90.82% ± 

1.12% 

89.29% ± 
0.73% 

ALL 89.18% ± 

0.46% 

83.28% ± 

0.62% 

89.18% ± 

0.71% 

90.60% ± 

0.71% 
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most discriminant, coherent features to represent each 

emotion class. 

D. Evaluating the Descriptors 

In this paper, we evaluate the performance of each 

descriptor using the one-versus-all classification scheme. The 

features of those face images of a particular emotion are 

labeled as positive, while those of other emotions as negative. 

Then, a binary classifier is trained using Support Vector 

Machine (SVM) for each class of emotion, so there are a total 

of 4 classifiers. The recognition rate for each of the 

descriptors is measured. In addition, the two best descriptors 

for each emotion class are paired and then fused using DCC 

to form a single coherent descriptor. The performances of 

these coherent features are also evaluated using the one-

versus-all scheme. 

E. The Proposed Automatic Descriptor Selection Algorithm 

In the evaluation of the respective descriptors and the 

coherent descriptors, we found that fusing the two descriptors 

which achieve the highest recognition rates for a particular 

emotion can achieve higher accuracy than the individual 

descriptors. However, the best descriptors for each emotion 

may be different, as well as for different databases. Thus, 

fusing fixed descriptors to form a coherent descriptor is not 

the optimum way to achieve the best results. To achieve 

robust facial expression recognition, an adaptive descriptor 

selection step is included in our algorithm. The descriptor 

selection algorithm analyzes the performances of each pair of 

descriptors for each expression class on the given training set 

and determines the best two descriptors for each expression 

class regarding the training set; a total of 4 pairs of descriptors 

are selected. As observed before, the best two descriptors may 

be different for different expression classes. Therefore, a pair 

of best descriptors is determined for each expression class. In 

the descriptor selection step, N-fold cross validation, where N 

= 3 in our experiments, has been conducted on the training set. 

After identifying the best descriptors, a binary classifier is 

trained for each class using the most salient features, which 

are created by fusing the two best features by using DCC. For 

a query input, four different feature vectors are created and 

tested on the four different classifiers. The output of each of 

the classifiers is viewed as the probability of the query 

belonging to the corresponding class. The query is assigned to 

the class whose corresponding output has the highest value. 

III. EXPERIMENTAL PROTOCOL AND RESULTS 

A. Experimental Protocol 

Experiments were conducted on three databases: BAUM-2, 

JAFFE, and a combination of two databases. JAFFE [18, 19] 

consists of images from 10 Japanese females that express 6 

basic emotions and the neutral. Unlike JAFFE which is a 

database recorded in a controlled environment, the BAUM-2 

[20] database consists of expression videos, extracted from 

movies. In our experiments, an image dataset, namely 

BAUM-2i, consisting of images with peak expressions from 

the videos from BAUM-2 is considered. There are 183 face 

images from 10 subjects in the JAFFE database that express 6 

basic emotions, while there are 829 face images from 250 

subjects in the BAUM-2i static expression dataset. Since the 

BAUM-2 database was created by extracting from movies, 

the images are in the close-to-real-life conditions (i.e. with 

pose, age, and illumination variations, etc.) and are more 

challenging than those in an acted database, as seen in Fig. 3. 

It has been shown that SVM can achieve satisfactory 

results even for high-dimensional feature vectors. 

Furthermore, the more recent Least Square SVM (LS-SVM) 

[21] has been proposed, which is very efficient on large 

datasets since it uses linear programming, rather than convex 

programming in SVM. LS-SVM has been applied to different 

recognition problems like face [22] and facial expression [23, 

24]. Therefore, our proposed method uses LS-SVM [25] with 

the Gaussian kernel. 

B. Experiment Results for the Evaluation of the Descriptors 

To evaluate the performances of the selected descriptors, 5-

fold cross validation was used. In this experiment, it is aimed 

to present that the performance of each descriptor is different 

for the different expression classes. Table I shows the 

performances of the different descriptors based on the JAFFE 

dataset. PHOG can achieve the highest accuracy for the 

expression classes Anger-Disgust and Happiness, while WLD 

performs better for the class Fear-Surprise. LBP descriptor 

outperforms other descriptors for the class Sadness. The 

overall performances of each of the descriptors for all the 

expression classes are also evaluated. As observed, the overall 

performances of the classifiers are less than the performances 

of any other binary classifiers. The reason behind it is that the 

overall performance considers all the four labels, while the 

binary classifiers consider the labels as positive and negative. 

From the results, we can see that PHOG and LBP are the two 

best descriptors for recognizing all the expressions. Similarly, 

Table II shows the corresponding performances based on the 

BAUM-2i dataset. LPQ outperforms all other descriptors for 

all the expression classes. LPQ and WLD achieve the best 

overall performances.  

As observed, even for the same expression classes, 

different descriptors can achieve the best recognition rates 

with different datasets. The reason for this is due to the fact 

that the two datasets are different in terms of race, age, 

resolution, pose, etc. Thus, the two databases are also merged 

 

TABLE   IV 
COMPARISON OF THE PERFORMANCES OF BEST DESCRIPTORS OF EACH 

DATASET WITH ADAPTIVE DESCRIPTOR SELECTION METHOD 

 

 JAFFE BAUM-2i 
BAUM-2i + 

JAFFE 

LBP-PHOG 
91.58% ± 

0.30% 

67.00% ± 

0.50% 

69.23% ± 

0.15% 

LPQ-WLD 
87.32% ± 

0.46% 

68.47% ± 

0.41% 

69.96% ± 

0.60% 

Adaptive Descriptor 
Selection 

92.13% ± 

0.91% 

68.71% ± 

0.53% 

70.99% ± 

1.13% 
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into a single one to explore the form a database with images 

having more variations. The two best descriptors are then 

identified for each expression class. Table III shows the 

performances of the descriptors with respect to each of the 

expression classes. It can be seen that the two best descriptors 

selected based on BAUM-2 + JAFFE are correlated with the 

two best descriptors of either dataset. For instance, LPQ and 

PHOG descriptors achieve the highest accuracies for the AN-

DI expression class in BAUM-2 + JAFFE (first row of the 

results in Table III). We can also observe that LPQ and 

PHOG are the descriptors that can achieve the best 

performances for the AN-DI class on BAUM-2 and JAFFE, 

respectively. 

The results, once again, show that the different expression 

classes of different datasets can be represented more 

effectively by a different set of descriptors. Thus, the 

descriptors to be used for classification should not be fixed for 

a specific expression class, and should be adaptive to the 

expressions and the image conditions. 

C. Experiment Results for the Proposed Adaptive 

Descriptor Selection Algorithm 

Based on the results in Tables I, II, and III, the descriptors 

to be used are adaptive to the expression classes. For the 

JAFFE database, the fused features for the AN-DI, FE-SU, 

HA, and SA are PHOG+LBP, WLD+PHOG, PHOG+LBP, 

and LBP+WLD, respectively. For the BAUM-2i database, the 

fused features for the AN-DI, FE-SU, HA, and SA are 

LPQ+WLD, LPQ+WLD, LPQ+LBP, and LPQ+LBP, 

respectively. For the combined database, i.e. BAUM-2i + 

JAFFE, the fused features for the AN-DI, FE-SU, HA, and 

SA are LPQ+PHOG, WLD+PHOG, LPQ+LBP, and 

LPQ+WLD, respectively. We compare our proposed adaptive 

algorithm with the non-adaptive algorithm, which uses the 

same fused features for all the expression classes. For the 

JAFFE and BAUM-2i databases, PHOG+LBP and 

LPQ+WLD, respectively, achieve the best overall 

performance. These two fused features are used non-

adaptively for the recognition of all the expression classes. In 

the experiments, 5-fold cross-validation has been conducted. 

As shown in Table IV, using fused features can achieve 

higher recognition rates than the individual descriptors, and 

the adaptive algorithm outperforms the non-adaptive one. 

Also, as observed, the adaptive descriptor selection algorithm 

increases the accuracy up to 2% for the JAFFE, BAUM-2i 

and BAUM-2 + JAFFE datasets since the most salient 

features are used in the recognition of each expression class. 

The recognition rate for the BAUM-2i dataset is lower than 

that for JAFFE since BAUM-2i was created with expression 

images extracted from movies. This makes the dataset more 

challenging because of the pose, illumination and resolution 

variations. 

IV. CONCLUSIONS 

In this paper, we aim to show the differences in the 

performances regarding four commonly used descriptors: 

LBP, LPQ, PHOG and WLD. SLPP is applied as the manifold 

learning method, which preserves the locality information 

with the help of class information. Then, DCC is adopted to 

fuse the best two feature sets by projecting them into a 

coherent subspace. We have proposed a classification method, 

which utilizes the adaptive descriptor selection algorithm to 

further increase the performance of a facial expression 

recognition system. In our experiments, four expression 

classes are considered for evaluating the performance of the 

proposed classification method. The LS-SVM is employed 

based on the features projected to a coherent subspace to learn 

a binary classifier for each of the expression classes. 

Experiment results have shown that the proposed 

classification method can achieve higher recognition rate than 

any of the individual descriptors. 
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