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ABSTRACT 

This paper proposes a hierarchical multiresolution based 
empirical mode decomposition approach for performing a 
wireless digital demodulation. The waveform corresponding 
to each digital symbol is represented as the sum of the 
intrinsic mode functions. Each obtained intrinsic mode 
function of each symbol is further decomposed via a discrete 
cosine transform approach. First, zeros are inserted in each 
intrinsic mode function in the discrete cosine transform 
domain. Then, the next level empirical mode decomposition 
is performed in the time domain. The discrete cosine 
transform coefficients of the next level intrinsic mode 
functions where the zeros are added are removed in the 
discrete cosine transform domain. This step is repeated and 
the obtained intrinsic mode functions in each level form a 
dictionary. The received signals corrupted by the additive 
noises with unknown distributions and distorted by 
nonlinear channels are represented by both the weight 
vectors and the residue vectors based on the dictionary at 
each level of decomposition. The decoding scheme is to find 
the corresponding symbol such that the sum of the residue 
vectors in various levels of the decomposition is minimized. 
Experimental results show that the decoding accuracy is 
higher than that of the conventional matched filter approach. 
 

1. INTRODUCTION 
Many devices such as home appliances, office equipments, 
mobile handsets and laptop computers are connected 
together via wireless communication networks. The 
common wireless communication networks include Wifi, 
Zigbee, Bluetooth and cellular mobile networks [1]-[3]. To 
transmit signals through wireless channels, signals are 
usually modulated to high frequency bands [4]. This is 
because high frequency signals can transmit more far away 
than low frequency signals. The received signals are then 
demodulated back to the baseband signals. Hence, 
modulation and demodulation are usually employed in 
wireless communication systems and they play a very 
important role in our daily life [1]-[4]. 
The common digital demodulation system is via the 
matched filter approach [5], [6]. A received signal is 
projected to a bank of matched filters. The symbol 
corresponding to the maximum absolute projection value is 
taken as the corresponding decoded symbol. Here, the 

waveforms representing the symbols have to be orthonormal 
to each others. Nevertheless, the waveforms are usually 
distorted by nonlinear channels (The channel characteristics 
are nonlinear with respect to the transmitted signals.). Hence, 
the received waveforms in the practical situations are not 
orthonormal to each others. Also, the wireless channel noise 
is required to be an additive white Gaussian distributed. 
However, this is also not the case in many practical 
situations. 
A hierarchical multiresolution based empirical mode 
decomposition of signals is implemented via the discrete 
Fourier transform [9]. However, as the discrete Fourier 
transform is a complex valued transform, the required 
computational power for the further processing is high. In 
this paper, a hierarchical multiresolution based empirical 
mode decomposition of signals is implemented via the 
discrete cosine transform. As the discrete cosine transform 
is a real valued transform, the required computational power 
for the further processing is significantly reduced. Moreover, 
this paper further applies the hierarchical multiresolution 
based empirical mode decomposition method for performing 
the wireless digital demodulation. It is worth noting that the 
conventional matched filter approach is a linear approach 
based on both the orthonormality among the waveforms and 
the additive white Gaussian distributed channel noises. On 
the other hand, although the signals are represented as the 
sum of the intrinsic mode functions, the intrinsic mode 
functions are nonlinear with respect to the signals. Hence, 
our proposed approach is a nonlinear approach which does 
not require the orthonormality among the waveforms and 
the additive white Gaussian distributed channel noises. 
Therefore, our approach would be more suitable for 
nonlinear channels [7], [8]. Moreover, each symbol in the 
conventional matched filter approach is represented by a 
single input single output linear time invariant filter while 
each symbol in our proposed approach is represented by a 
weighted vector. As the decoding process of the 
conventional matched filter approach is to compare the 
magnitudes of the projected values in the one dimensional 
space while the decoding process of our proposed approach 
is find the solution of an optimization problem in a high 
dimensional space, the degree of freedom of our proposed 
approach is much higher than that of the matched filter 
approach. 
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The outline of this paper is as follows. The proposed digital 
demodulation scheme is formulated as an optimization 
problem via a hierarchical mutliresolution based empirical 
mode decomposition approach. The details are discussed in 
Section 2. Computer numerical simulation results are 
presented in Section 3. Finally, a conclusion is drawn in 
Section 4. 
 

2. PROBLEM FORMULATION 
Suppose that there are C  symbols in a wireless digital 
communication system and each symbol is represented by 
an N  point discrete time sequence. Let 

cx  for 1,,0  Cc   

be the vectors representing these sequences. Assume that 
cx  

for 1,,0  Cc   are distorted by a nonlinear channel. Let 

cx  for 1,,0  Cc   be the vectors representing these 

distorted sequences. Suppose that 
cx   for 1,,0  Cc   can 

be represented by the sum of its intrinsic mode functions. 
Let 

cF  be the matrix with its columns being the vectors 

representing the intrinsic mode functions of 
cx  for 

1,,0  Cc  . Obviously, 
cF  can be obtained via 

performing the empirical mode decomposition on 
cx  for 

1,,0  Cc  . Define  10  CFFF  . Here, the total 

number of rows of F  is equal to the signal length and the 
total number of columns is equal to the total number of 
intrinsic mode functions. It is worth noting that the total 
number of intrinsic mode functions is usually smaller than 
the length of the signal. Hence, F  is a tall matrix. Moreover, 
the intrinsic mode functions are usually linear independent. 

Hence, we can assume that TF F  is invertible. Let 
cl  for 

1,,0  Cc   be the weight vector representing 
cx  using F . 

That is, 
c cx Fl  for 1,,0  Cc  . Then, we have 

 
1T T

c c



l F F F x  for 1,,0  Cc  . It is well known in the 

wavelet theory that the frequency bands at high scale 
wavelets are narrower than those at the low frequency bands. 
Hence, fine details of the signals can be extracted out if the 
signals are represented using high scales of wavelets. 
Similarly, if the intrinsic mode functions can be further 
decomposed, then more fine information can be employed 
for the demodulation. Nevertheless, it is worth noting that 
the intrinsic mode functions cannot be further decomposed 
if the empirical mode decomposition is directly applied to 
the intrinsic mode functions. In order to address this 
difficulty, the decomposition of the signal is performed via a 
discrete cosine transform approach. The detail procedures 
are as follow. First, the discrete cosine transforms of the 
intrinsic mode functions are computed. Second, zeros are 
inserted in the intrinsic mode functions in the discrete cosine 
transform domain. Third, the inverse discrete cosine 
transforms of these zero inserted intrinsic mode functions 
are computed. Fourth, the next level empirical mode 
decomposition of each zero inserted intrinsic mode function 

is performed in the time domain. Fifth, the discrete cosine 
transforms of these next level intrinsic mode functions are 
computed. Sixth, the discrete cosine transform coefficients 
of the next level intrinsic mode functions are removed 
where the removed coefficients are located exactly the same 
as that the zeros are added in the discrete cosine transform 
domain. Seventh, the inverse cosine transforms of these zero 
removed intrinsic mode functions are computed. As a result, 
the next level intrinsic mode functions are obtained. 

Similarly, denote F
~

 as the matrix with its columns being the 
vectors representing the next level intrinsic mode functions. 

Let 
cl

~  for 1,,0  Cc   be the weight vector representing 

cx  using F
~

. That is, 
c cx Fl   for 1,,0  Cc  . Similarly, 

we also assume that TF F   is invertible. Hence, we have 

 
1

T T
c c



l F F F x     for 1,,0  Cc  . In fact, more intrinsic 

mode functions in higher levels of the decomposition can be 
obtained by repeating the above procedures. 
Now consider the case that the transmitted signals are 
corrupted by the noises with an unknown distribution and 
distorted by a nonlinear channel. Let y  be the received 

signal. In this case, it is not guaranteed that y  can be 

represented as a linear combination of the columns of F  or 

F
~

 and we have the reconstruction errors. Denote r  and l  as 
the reconstruction error and the weight vector by 
representing y  using F , respectively. Similarly, denote r~  

and l
~

 as the reconstruction error and the weight vector by 

representing y  using F
~

, respectively. That is, rFly   and 

rlFy ~~~
 . It is worth noting that a new set of intrinsic 

mode functions are required to be computed for a new signal 
based on the conventional empirical mode decomposition 
approach. However, as the difference between y  and 

cx  for 

a particular value of  0, , 1c C   is only due to the 

presence of the additive noise and the difference due to the 
time varying channel, the required computational power can 
be reduced if the new signal is represented by the linear 
combination of the intrinsic mode functions of the original 
signal plus an error signal without performing the empirical 
mode decomposition again. The robustness of the empirical 
mode decomposition depends on the energy of the additive 
noise and the stationarity of the channel. 
From the demodulation viewpoint, we need to determine l  

and l
~

 for a new received signal y . For a slow varying 

channel and a low noise energy environment, both 2
Fly   

and 
2~~

lFy   are small. Therefore, the demodulation 

scheme can be formulated as the following optimization 
problem: 
Problem ( P ) 

c
min  

22 ~~
cc lFyFly  , 

subject to  10 ,,  Cc lll   and  10

~
,,

~~
 Cc lll  . 
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Denote *c  as the optimal solution of Problem ( P ). Then, the 

decoding rule is to assign y  to *c . 

Denote X  and X  as the matrices with their columns being  

cx  and 
cx  for 1,,0  Cc  . Let 

CI  be the C C  identity 

matrix. Suppose that the waveforms for representing the 
symbols are orthonormal to each others. Then, we have 

T
CX X I . If there is no noise corrupted in the channel and 

there is no distortion in the channel, then only one element 
in TX y  is one and all other elements are zero. Hence, by 

locating the position of the nonzero element in TX y , the 

transmitted symbol can be decoded. This is the working 
principal of the conventional matched filter approach. 
However, as the channel is nonlinear, in general  T

CX X I .  

Even though there is no noise corrupted in the channel, it is 
no longer true that there is only one nonzero element in 

TX y . Therefore, the decoding error based on the 

conventional matched filter approach could be very large. 
On the other hand, it is still true in the nonlinear channel 
environment that both 

c cx Fl  and 
c cx Fl   for 

1,,0  Cc  . If there is no noise corrupted to the channel 

and the nonlinear channel is stationary, then there is no 
decoding error based on our proposed approach. As our 
proposed approach can eliminate the decoding error due to 
the stationary nonlinear channel characteristics, our 
proposed approach in general can achieve a lower decoding 
error compared to that of the matched filter approach. 
 

3. NUMERICAL COMPUTER SIMULATION 
RESULTS 

In this paper, 2C   is chosen for the demonstration. This is 
because the binary communication system is the most 
common wireless digital communication systems employed 
in practical situations. To represent a waveform by a 
discrete time sequence, the sampling rate is at least higher 
than the Nyquist sampling rate of the signal. Hence, N  
could not be too small. In this paper, 256N   is chosen 
which is large enough for most simple waveforms. To order 
to have a fair comparison to the matched filter approach, 

cx  

for 0, , 1c C   should be chosen  as the signals which are 

orthonormal to each others. Here,  0

2
sin

n
x n

N

 
  

 
 and 

 1

2
cos

n
x n

N

 
  

 
 for 0, , 1n N   are chosen. This is 

because they are the most common orthonormal waveforms 
used in binary communication systems. To demonstrate the 
effectiveness of our proposed method, the following three 
cases are considered. The first case considers the situation 
that there is no deterministic distortion introduced by the 
channel. The second case considers the situation that the 
deterministic distortion introduced by the channel is linear 
and time varying. In this case, the deterministic channel 
distortion can be modeled by a matrix multiplication. Let the 

matrix be H . Here, we assume that there is no attenuation 
introduced by this deterministic distortion because of the 
simplicity reason. This implies that H  is unitary. The last 
case considers the situation that the deterministic distortion 
introduced by the channel is nonlinear but time invariant. 
Here, the deterministic channel distortion function is 
modeled by a polynomial function. This is because Taylor 
series can be employed for modeling a wide class of 
nonlinear functions. Let the order, the DC gain and the roots 
of the polynomial be P , PG  and 

p  for 0, , 1p P  , 

respectively, as well as the polynomial function be  h . 

That is,        
1

0

P

c c c p
p

x n h x n G x n 




    for 

0, , 1c C  . Here, 
p  for 0, , 1p P   are assumed to 

be uniformly disturbed between -1 and 1 because the 
dynamical ranges of these sinusoidal waveforms are 
between -1 and 1. Besides, 1.3G   is chosen because the 
DC gain of this nonlinear distortion function is 
approximately preserved. Moreover, 54P   is chosen 
because more terms in the polynomial can achieve a more 
accurate approximation of a nonlinear function. On the other 
hand, the channel is also corrupted by an additive random 
noise. Denote the random noise vector be v . Hence, we 
have 

c cx x  for 0, , 1c C   and 
c y x v  for some 

 0, , 1c C   for the first case, 
c cx Hx  for 0, , 1c C   

and 
c y Hx v  for some  0, , 1c C   for the second 

case, and 
c y x v  for some  0, , 1c C   for the last 

case. In this paper, two types of random noises are 
considered. They are the Gaussian disturbed random noise 
and the Rayleigh distributed random noise. They are chosen 
because they are commonly employed for wireless 
communication channels. For the Rayleigh distributed noise, 

it is in the form of  
2

22
2Rp e











 , where   is the 

parameter of the Rayleigh distribution controlling the noise 
energy. For the Gaussian distributed noise, it is in the form 

of  
 2

22
1

2
Gp e

 







 , where   and   are the mean and 

the standard deviation of the distribution, respectively. Here, 
  controls the noise energy and 0   is chosen because of 

the simplicity reason. 
In the hierarchical multiresolution based empirical mode 
decomposition algorithm, only two levels of the 
decompositions are performed because of the simplicity 

reason. Hence, we only have F  and F
~

. Also, the total 
numbers of zeros to be inserted and removed are exactly 
equal to the length of the signal. Also, they are inserted and 
removed at the highest frequency band. 

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1168 APSIPA ASC 2015



APSIPA 2015 

Define the signal to noise ratio as 
T
c c
T

SNR E
 

  
 

x x

v v
. Here, 

 E  is the expectation operator. Figure 1 and Figure 2 plot 

the bit error rates against the signal to noise ratios for the 
channel without any deterministic distortion but with the 
Gaussian disturbed noise and the Rayleigh disturbed noise, 
respectively. From Figure 1 and Figure 2, we can see that 
our proposed method achieves the same performances as 
those of the matched filter approach for both the Gaussian 
disturbed noise and the Rayleigh disturbed noise. Since the 
matched filter approach achieves the optimal solutions for 
both the Gaussian disturbed noise and the Rayleigh 
disturbed noise for the channel without any deterministic 
distortion, this implies that our proposed method also 
achieves the optimal solutions for the channel without any 
deterministic distortion for both the Gaussian disturbed 
noise and the Rayleigh disturbed noise. Figure 3 and Figure 
4 plot the bit error rates against the signal to noise ratios for 
the channel with the linear time varying deterministic 
distortion as well as with the Gaussian disturbed noise and 
the Rayleigh disturbed noise, respectively. It can be seen 
from Figure 3 and Figure 4 that the bit error rates for the 
matched filter approach of both the Gaussian disturbed noise 
and the Rayleigh disturbed noise drop very slowly as the 
signal to noise ratios increase. This implies that the matched 
filter approach is not good for the channel with the linear 
time varying deterministic distortion. This is because 

c
T HxX  is no longer equal to the vector with the unique 

nonzero element located at the c
th element. On the other 

hand, our proposed method still performs very well for the 
channel with the linear time varying deterministic distortion 
for both the Gaussian disturbed noise and the Rayleigh 
disturbed noise. This is because the linear time varying 
characteristic of the channel is approximated by its 
nonlinear characteristic. Finally, Figure 5 and Figure 6 plot 
the bit error rates against the signal to noise ratios for the 
channel with the nonlinear time invariant deterministic 
distortion as well as with the Gaussian disturbed noise and 
the Rayleigh disturbed noise, respectively. Similarly to the 
above, it can be seen from Figure 5 and Figure 6 that the bit 
error rates of both the Gaussian disturbed noise and the 
Rayleigh disturbed noise for the matched filter approach are 
saturated. Here, “saturated” means that the probability of 
error per symbol is equal to 0.5. This implies that the 
matched filter approach basically fails for performing the 
demodulation for the channel with the nonlinear time 
invariant deterministic distortion. On the other hand, it can 
be seen from Figure 5 and Figure 6 that our proposed 
method still performs very well for the channel with the 
nonlinear time invariant deterministic distortion for both the 
Gaussian disturbed noise and the Rayleigh disturbed noise. 
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Figure 1. Channel without any deterministic distortion but 

with additive Gaussian distributed noise. 
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Figure 2. Channel without any deterministic distortion but 

with additive Rayleigh distributed noise. 
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Figure 3. Channel with linear time varying deterministic 

distortion and additive Gaussian distributed noise. 
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Figure 4. Channel with linear time varying deterministic 

distortion and additive Rayleigh distributed noise. 
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 Figure 5. Channel with nonlinear time invariant 
deterministic distortion and additive Gaussian distributed 

noise. 
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Figure 6. Channel with nonlinear time invariant 

deterministic distortion and additive Rayleigh distributed 
noise. 

 
4. CONCLUSION 

This paper proposes a hierarchical multiresolution based 
empirical mode decomposition approach for performing the 
demodulation for wireless digital communication systems. 
The waveform corresponding to each digital symbol is 
represented as the sum of the intrinsic mode functions. Each 
obtained intrinsic mode function of each symbol is further 
decomposed in higher levels. The obtained intrinsic mode 
functions in each level form a dictionary. The received 
signals corrupted by the additive noises with unknown 
distributions and distorted by nonlinear channels are 
represented by both the weight vectors and the residue 
vectors based on the dictionary at each level of 
decomposition. The decoding scheme is to find the 
corresponding symbol such that the sum of the residue 
vectors in various levels of the decomposition is minimized. 
Since the empirical mode decomposition approach can 
capture the nonlinear characteristics of the channel, the 
experimental results show that the decoding accuracy based 
on our proposed method is higher than that based on the 
conventional matched filter approach. 
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