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Abstract—The signals of BPSK-OFSM systems are real-valued,
however, this property is ignored in state-of-the-art approaches,
leading to detection performance degradation. In this paper, this
prior knowledge is employed to develop a new equalizer based on
minimum mean square error (MMSE) criterion. In particular,
the proposed equalizer can achieve 3 dB gains comparing to the
traditional MMSE equalizer in large signal-to-noise (SNR) region.
Furthermore, the successive detection (SD) technique is used in
the proposed equalizer is able to take the advantage of time
diversity in time-varying channels. The computational complexity
of the proposed methods are also analyzed and shown to be
more efficient. Computer simulations are included to compare
the proposed approaches with the traditional techniques in terms
of detection performance.

I. Introduction

Due to the use of Cyclic Prefix (CP), whose length is not
less than the channel length, a low complexity one-tap equaliz-
er is able to efficiently eliminate the inter-symbol interference
(ISI) for OFDM systems in the quasi-static channels. However,
in the time-varying channels, the time variations of the channel
within single OFDM symbol duration could destroy subchan-
nel orthogonality, incurring intercarrier interference (ICI) and
eventually leading to system performance degradation. In order
to combat the ICI, various methods, such as differential coding,
ICI self-cancellation, Doppler diversity, and ICI cancellation-
based equalization [1]-[5], have been proposed. Among them,
the ICI cancellation-based equalization method is the most
common and effective for its good performance under perfect
channel estimation.

The linear equalizers, such as the least squares (LS) and
minimum mean square error (MMSE) equalizers are widely
used in the communication systems, because of their simple
structure. However, for time-varying channels, the classical
linear equalizers cannot efficiently exploit the diversity in the
time domain, suffering serious performance degradation. To
circumvent this issue, there are mainly two categories in the
existing methods.

An alternative OFDM signals detection method is widely
linear (WL) filtering techniques [1], who exploit the non-
circularity of the received data to obtain extra degrees of
freedom. Nevertheless, to implement OFDM signals detection,
two complicated equalization matrices need to be determined,
requiring very high computational complexity. Another popu-
lar OFDM signals detection method is the nonlinear equalizers
who have decision feedback or ICI cancellation in the proce-
dure of detection, such as MMSE with successive detection

(MMSE-SD) [2]. However, when the number of subcarriers
in one OFDM symbol increases, their computational loads
also increase rapidly. To combat the problem, some papers
[3]-[4] reduce computational complexity by ignoring small
ICI coefficients in channel matrix. Unfortunately, this will
lead to performance degradation. Recently, a space alternat-
ing generalized expectation-maximisation (SAGE) technique
is applied to detect signals [5]. It has been revealed that
it not only has low computational complexity but also has
superior detection performance. In time-varying channels, in
order to guarantee the reliability of the detection performance,
BPSK-OFDM are usually used in communication systems.
Nevertheless, the aforementioned approaches neglect the fact
that the BPSK-OFDM signals are real-valued. Therefore, a
novel signals detection algorithm will be proposed. This
can be achieved by forming a novel equalization matrix. It
comprises the prior information that the transmitted data is
a real-valued vector. After detection, the theoretical analysis
and simulation results illustrate the proposed scheme has
complexity advantages and significant performance over the
existing signal detection methods. In order to further improve
the detection performance, SD technology could be introduced
in our proposed algorithm. It’s success is due to the fact
that it could make good use of time diversity in time-varying
channels.

The following notations are used throughout the paper.
Boldface lowercase and uppercase letters are used for vec-
tors and matrices, respectively. Superscripts T and H denote
transpose and conjugate transpose, respectively. The notation
E(·) and tr(·) are reserved for the expectation operator and
the trace of a matrix, respectively. The matrix F denotes the
discrete Fourier transform (DFT) matrix and the matrix FH

denotes the inverse discrete Fourier transform (IDFT) matrix.
Furthermore, ei stands for an N-size column vector with the
i-th element being one while elsewhere zero.

II. SystemModel

We consider an OFDM system with N subcarriers. Over
time-varying channels, the received signals for each OFDM
symbol can be expressed as

r = Hd + v (1)

where d = [d0, · · · , dN−1]T , r and v are the N-point DFTs of
the transmitted signal vector, received signal vector and noise
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vector, respectively. H is an N × N channel impulse response
matrix in the frequency domain.

It is assumed that H, which can be obtained by pilot-assisted
channel estimation methods, is available at the receiver. The
principal task of this paper is to detect the signal d with
received r.

III. Our proposed equalizer for BPSK-OFDM systems

In this section, we mainly discuss the linear equalizers
which have no decision feedback in signal detection for BPSK-
OFDM systems. First, Part A will introduce the traditional
MMSE equalizer. However, the prior information that the
transmitted data are real-valued is neglected in the procedure
of detection, leading to performance degradation. Hence, our
modified MMSE (M-MMSE) equalizer, which applies the
prior information is proposed and presented in Part B.

A. Traditional MMSE equalizer

It is well known that the MMSE equalizer, which minimizes
the total power of the ICI component and Gaussian noise at
the output, is usually better than the LS equalizer. Based on
MMSE criterion, an equalization matrix is firstly constructed,
then the transmitted data d can be detected by multiplying the
received signal r by the equalization matrix W [2], that is

d̂MMSE =Wr (2)

where

W = HH
(
HHH +

σ2
v
σ2

d
IN

)−1

in which σ2
v and σ2

d denote the variances of the elements
of v and d, respectively. For simplicity but without loss of
generality, the power of transmitted signals, σ2

d, is assumed to
be 1 throughout this paper.

B. M-MMSE equalizer for BPSK-OFDM systems

Being different from that in MQAM-OFDM systems, the
transmitted signal d in BPSK-OFDM systems is not complex-
valued but real-valued. According to the information theory,
if this prior information can be considered in detection, the
system performance will be improved. For this purpose, the
relation between the observed data vector and the detected
parameter vector should comprise this prior information.

According to (1), the real component and imaginal compo-
nents of r can be expressed as

rRe=HRed+vRe (3)

and
rIm=HImd+vIm, (4)

respectively.
In the sequel, the received data in (1) can be repressed as

y = Qd + n (5)

with

y = [ rRe
T rIm

T ]T , Q =
[

HRe
T HIm

T
]T

and

n =
[

vRe
T vIm

T
]T
.

Obviously, (5) has indicated that the transmitted signal d is a
real-valued vector. It’s worth noting that (5) is also suitable to
other systems with real-valued constellation, such as, MPAM-
OFDM and MASK-OFDM. Further, the relation between the
detected parameter vector and the new constructed observed
vector can be supposed as linear, which is given as

d̂M-MMSE = Gy (6)

where G ∈ RN×2N is a new equalizer matrix.
Assuming J represent the cost function of detection and

according to MMSE criterion, we have

min J = minE
[∥∥∥d − d̂M-MMSE

∥∥∥2] = min
G∈RN×2N

E
[
∥d −Gy∥2

]
(7)

By setting the derivative of J with respect to G to zero, we
have

∂
∂G

{
E
[
(d −Gy)T (d −Gy)

]}
= E
{
∂
∂G

[
tr
(
(d −Gy) (d −Gy)T

)]}
= 2E

[
−dyT +GyyT

]
= 0

(8)

Before going on further, we will make the following as-
sumption:
• The transmitted vector d is uncorrelated with the Gauss

noise vector v, i.e., E{dT v} = 0.
Then, substituting (5) into (8) yields

E
[
G (Qd + n) (Qd + n)T

]
− E
[
d(Qd + n)T

]
= G
(
QE
[
ddT
]

QT+E
[
nnT
])
− E
[
ddT
]

QT

= 0
(9)

which leads to the solution for G given by

G = QT

QQT +
σ2

n

σ2
d

I2N

−1

(10)

where σ2
n denotes the variances of noise.

As v is AWGN vector, its real component has the same
power as its imaginal component, i.e., σ2

n =
1
2σ

2
v. substituting

this into (10), we have

G = QT

QQT +
σ2

v

2σ2
d

I2N

−1

(11)

Since QQT +
σ2

v
2σ2

d
I2N in (11) is a much big matrix whose size is

2N × 2N, the operation of
(
QQT +

σ2
v

2σ2
d
I2N

)−1
will incur much

computational load. In order to circumvent this problem, (11)
is rewritten as

G =
QT Q +

σ2
v

2σ2
d

IN

−1

QT (12)

The proof of (12) is seen in Appendix III in [2]. Apparently,
QT Q + σ2

v
2σ2

d
IN is an N × N matrix enabling us to determine G

with lower computational requirement than (11).
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IV. M-MMSE equalizer with SD technique for
BPSK-OFDM systems

It is pointed out in [2] that though the time-varying channels
destroy the orthogonality of subcarriers, they provide us with
time diversity, especially in rapidly time-varying channels.
However, the residual interference and noise enhancement
grow as well. In order to make good use of time diversity. A
nonlinear equalizer, i.e., MMSE-SD, is proposed and proved
that it can achieve better performance of detection. This can
be achieved by detecting the transmitted data one-by-one, and
eliminating the ICI one-by-one. Similarly, the SD technique
also can be adopted in our M-MMSE equalizer, which, for
convenience, can be named as M-MMSE-SD. M-MMSE-SD’s
procedure listed in Algorithm 1.

Algorithm 1 M-MMSE-SD algorithm
Step 1: Set i = 0.
Step 2: Obtain the M-MMSE equalization matrix by (12).
Step 3: Find the subcarrier who has the highest post-
detection SNR:

li = arg max
k

SINRk =
|⟨gk, qk⟩|2∑

m,m,k
|⟨gk,qm⟩|2 + σ2

v
2σ2

d
∥gk∥2

(13)

where gk and qk are the k-th column vector of GT and Q,
respectively.
Step 4: Make a soft decision of the li-th subcarrier by

d̃li = gli
T y (14)

Step 5: Obtain the detected data d̂li by making a hard
decision on d̃li .
Step 6: Modified the vector y by subtracting the terms
coming from the contributions of the detected data d̂li .

y = y − qli d̂li (15)

Step 7: Update the matrix Q by

Q =
[
q0 · · · qli−1 0 qli+1 · · · qN−1

]
(16)

Step 8: If i = N − 1, set i = i + 1 and jump to Step 2.

V. Complexity Requirement

The computational complexity of the proposed algorithms
is evaluated by the number of real multiplications. Assume
that the operation of N ×N complex matrix inversion requires
O(N3) complex multiplications and a complex multiplication
is equivalent to three real multiplications. For our proposed M-
MMSE algorithm, the main complexity is in solving (12). The
computation of QT Q+ σ

2
v

2σ2
d
IN in (12) requires O(2N3 +N) real

multiplications. Then, the matrix inversion and matrix multi-
plication in (12) involve O(N3), respectively. Therefore, the
whole algorithm requires O(4N3 +N) real multiplications. On
the other hand, the number of real multiplication required to
calculate each step of our proposed M-MMSE-SD algorithm is

listed in Table I. Then, we can easily obtain that this algorithm
requires a total of O(4N4 + 2N3 + 8N2) real multiplications.

In other to compare the complexity of different methods, the
complexity of our proposed algorithms, LS, MMSE, SAGE
and MMSE-SD methods are all presented in Table II. It
is concluded that these methods can be ordered in terms
of the complexity in an ascending manner as M-MMSE,
LS, MMSE, SAGE, M-MMSE-SD , and finally MMSE-SD
methods. Apparently, among all the linear equalizers, our
proposed M-MMSE algorithm has the lowest computation
complexity. For the nonlinear equalizers, though our proposed
M-MMSE-SD algorithm is slightly higher than the SAGE
method, the simulation results in next section will show that
it has better performance of detection, especially in high
normalized Doppler frequency.

TABLE I
Computation complexity of each step inM-MMSE-SD.

Number of real multiplications
Step 1 0
Step 2 O(4N3 + N)
Step 3 O(2N2 + 3N)
Step 4 O(2N)
Step 5 0
Step 6 O(2N)
Step 7 0
Step 8 0

TABLE II
Computation complexity of each method

Number of real multiplications
LS O(9N3)

MMSE O(9N3 + 3N)
M-MMSE O(4N3 + N)

SAGE O(3N4 + 3N3 + 3N2)
MMSE-SD O(9N4 + 3N3 + 15N2)

M-MMSE-SD O(4N4 + 2N3 + 8N2)

Note that, in order to further reduce the computational
complexity of various detection methods, the channel impulse
respond matrix H can be approximated as a banded matrix. As
the same as that in [5], their computational complexity could
be easily computed.

VI. Simulation Results

In this section, simulation results are presented to assess
the performances of the proposed algorithms. The parameters
of the system selected are in concordance with the standard
WiMAX IEEE 802.16e. The system operates with a 5 MHz
bandwidth and is divided into 512 subcarriers. The length of
CP is 64. The scheme given in [6] will be used for generating
the time-varying channels. And typical urban (TU) area model
which is considered in the COST-207 project [7] is adopted in
the channel parameters.The normalized Doppler frequencies
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Fig. 1. Performance comparisons of detection algorithms (BPSK-OFDM, fn =
0.0307).

are set at fn = 0.0307 and fn = 0.1075, corresponding to
a mobile object moving with speeds of 120 and 420 km/h,
respectively, at a carrier frequency of 2.4 GHz. This velocity
can be computed as [3]

v = fn c
fcT

where c, T and fc represent the speed of light, overall symbol
duration and carrier frequency, respectively.

To compare the detection performance of our proposed
algorithms with that of the existing algorithms, the BER of
BPSK-OFDM is shown as functions of SNR for fn = 0.0307
and fn = 0.1075 in Figs. 1 and 2, respectively. Results are
shown for LS, MMSE, SAGE, M-MMSE, MMSE-SD and
M-MMSE-SD equalizers. As expected, it is seen that these
algorithms can be ordered in terms of the performance in
an ascending manner as the LS, MMSE, SAGE, M-MMSE,
MMSE-SD and M-MMSE-SD.

It’s observed in Fig. 1 that M-MMSE equalizer exhibits a
detection gain of about 1.8 dB over the traditional MMSE
equalizer at BER=2 × 10−4 for fn = 0.0307. while the M-
MMSE-SD equalizer performance is only slightly better than
that of the linear equalizers. This is due to small time diversity
in slowly time-varying channels. In addition, it is seen in Fig. 2
that the M-MMSE equalizer performance exhibits a detection
gain of about 5 dB over the traditional MMSE equalizer at
BER=2 × 10−4 for fn = 0.1075. Such big gains are achieved
by applying the prior information that the transmitted data
are real-valued for BPSK-OFDM systems. The curves in Fig.
2 also illustrate that the nonlinear equalizers perform much
better than the traditional linear equalizers. This is because
the nonlinear equalizers, such as SAGE, MMSE-SD and M-
MMSE-SD, not only minimize the powers of the residual
interference and noise, but also make good use of the large
time diversity in high normalized Doppler frequency.

VII. Conclusion

In this paper, we propose the novel signals detection algo-
rithms for BPSK-OFDM systems. The M-MMSE algorithm,
i.e., a linear equalizer, performs better than the traditional
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Fig. 2. Performance comparisons of detection algorithms (BPSK-OFDM, fn =
0.1075).

MMSE equalizer with low computational complexity. This
is because that the prior information is considered when we
construct the equalization matrix. In order to further improve
the detection performance, the M-MMSE-SD algorithm is
also proposed, which has been proved that it has the best
performance in the existing equalizers.

In fact, the M-MMSE and M-MMSE-SD algorithms not
only can be applied in BPSK-OFDM systems, but also can
be applied in the other systems, such as MPAM-OFDM and
MASK-OFDM, who have real-valued constellation.
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