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Abstract—Prosody is a kind of cues that are critical to human
speech perception and comprehension, so it is plausible to
integrate prosodic information into machine speech recognition.
However, as a result of the supra-segmental nature, it is hard
to integrate prosodic information with conventional acoustic
features. Recently, RNNLMs have shown to be the state-of-the-
art language model in many tasks. We thus attempt to inte-
grate prosodic information into RNNLMs for improving speech
recognition performance based on rescoring strategy. Firstly,
three word-level prosodic features are extracted from speech
and then passed to RNNLMs separately. Therefore RNNLMs
predict the next word based on prosodic features and word
history. Experiments conducted on LibriSpeech Corpus show that
the word error rate decreases from 8.07% to 7.96%. Secondly,
prosodic information is combined on feature-level and model-
level for further improvements and word error rate decreases
4.71% relatively.

I. INTRODUCTION

Recently deep neural network has become one of the
most popular methods in almost every field. The hybrid
context dependent (CD)[1] deep neural network (DNN) hid-
den Markov model (HMM) (CD-DNN-HMM) becomes the
dominant framework for speech recognition[2]. As a result
of the ability of modeling complicated correlations in speech
features, the CD-DNN-HMM performs much better than the
conventional Gaussian mixture model (GMM) HMM.

However, there is still a gap between human speech recog-
nition and machine speech recognition. Actually, human can
integrate different information hidden in speech, such as
speakers age, gender, mention, attitude, intention and so on
from his/her voice, regardless of what is said. Prosody is
such important information we need in speech perception
processing[3]. For machine speech recognition system, a direct
idea to integrate prosodic features is to combine them with
other acoustic features when constructing acoustic models.
However, prosody is actually related to various levels of infor-
mation, from linguistic, para-linguistic, to non-linguistic and
prosodic features spread to a wider range out of a phone or a
syllable[4]. Its acoustic presentation is thus rather complicated
which makes it hard to incorporate prosodic information into
speech recognition systems.

Although the difficulties mentioned above, there are lots
of studies trying to employ prosodic information to improve
machine speech recognition performance. Some promising
work includes the use of prosodic features to improve duration
modeling[5], for controlling the search space and cross-word
context models[6], to improve noise robustness recognition[7],
to help to drive dynamic pronunciation modeling[8], and
language models[9].

As mentioned above, it is difficult to integrate prosody
information in acoustic models. However, we notice that the
prosody information can implicitly reflect the emotion of
speakers and can help human to predict what the speaker
would say. Consider about this, in this paper, the prosody
information is extracted and integrated with language models.

In recent years, neural network based language models
(NNLMs)(feed-forward[10][11] or recurrent[12]) have shown
success in both perplexity and word error rate (WER) com-
pared to the conventional N-gram language models. The main
reason is that the discrete nature of N-gram language models
makes generalization a challenge while the NNLMs embed
words in a continuous space. Therefore, the NNLMs can
achieve better generalization for unseen N-grams. Moreover,
NNLMs are easy to extend by adding extra input information
such as prosodic features. When it comes to comparing feed-
forward with recurrent, the recurrent connections allow the
recurrent NNLMs to use arbitrarily long history while the
feed-forward NNLMs are limited to fixed context. In this
paper, we integrate word-level prosodic features into RNNLMs
to improve speech recognition performance based on lattice
rescoring method. The remainder of the paper is organized
as follows. Section 2 reviews the structure of the typical
RNNLM. In Section 3, we depict the main prosodic features
we used and integrates prosodic information into RNNLMs.
Next, in Section 4, we describe experiments for speech recog-
nition and results. We discuss and conclude in Section 5.

II. THE RNNLM

By using recurrent connections, information can cycle inside
networks for arbitrary long time. In other words, RNNLMs
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have the ability of encoding temporal information implicitly
for contexts with arbitrary length. The typical structure of
a RNNLM can be described by a simple recurrent neural
network or Elman network[13]. The structure of this recurrent
neural network is described in Fig. 1.

Fig. 1. Simple recurrent neural network.

It has an input layer x, a hidden layer s (also called the
context layer or state of the network) and an output layer y.
Input to the network at time t is x(t), output is y(t) and s(t) is
the state of the network (hidden layer). Input x(t) is formed by
concatenating w(t) and s(t− 1), which represent the current
word and output from the context layer(hidden layer) at time
t− 1 respectively. The computation among input, hidden and
output layers are as follows:

x(t) = [w(t), s(t− 1)] (1)

sj(t) = f

(∑
i

xi(t)uji

)
(2)

yk(t) = g

(∑
j

sj(t)vkj

)
(3)

where f(z) is sigmoid activation function and g(z) is
softmax function.

By denoting the weight matrix of input w(t) to hidden s(t)
as Wxh, input s(t − 1) to hidden s(t) as Whh, and hidden
s(t) to output y(t) as Why. We can rewrite the computation
equations as:

s(t) = f (Wxhw(t) +Whhs(t− 1)) (4)

y(t) = g(Whys(t)) (5)

Input vector x(t) represents word at time t encoded using
1-of-N coding and previous context (hidden) layer, the size
is equal to size of vocabulary V plus the size of the context
(hidden) layer s. Output layer y(t) represents probability dis-
tribution of next word given previous word w(t) and context
s(t − 1). Softmax function in output layer ensures that this
probability distribution is valid, i.e., ym(t) > 0 for any word
m and

∑
k yk(t) = 1.

III. PROSODIC FEATURES AND INTEGRATION

A. Feature extraction

The most frequently used acoustic correlates of prosody in-
clude fundamental frequency(or pitch), energy, and duration(or
timing)[8]. We focus on features related to these three main

cues. Pitch is an important prosodic feature and it might be
changed when speakers emphasize words or express some
emotions. As a result that speech is not strictly periodic,
pitch will be varied with the time of opening and closing
glottis. Pitch tracking is thus a tough task and influenced
by many elements. One of most common approach for de-
tecting pitch is NCCF (Normalised Cross Correlation Func-
tion, NCCF)[14][15]. We use the pitch extraction algorithm
provided in KALDI Toolkit for frame level features[16],
which is detailed in literature[17]. The resulting feature is
a 3-dimensional vector consisting of pitch, NCCF and POV
(Probability of Voicing, POV)[17]. In order to obtain the word
level features, we average the frame level features within the
word based on alignments.

Energy is a representation of the amplitude and the energy
parameters are obtained by computing log RMS (Root Mean
Square, RMS) energy for each frame speech feature, then
frame level energy features are also averaged for the word
level energy feature via alignments. For the j-th frame of
speech, containing N sampling points aj1, . . . , ajN , the log
RMS energy is estimated by:

RMSj = log

√√√√ 1

N

N∑
i=1

e2ji (6)

where e2ji is the squared amplitude of aji.
Duration information is obtained by summing based on the

alignments in training procedure, while the first time decoding
results in testing procedure.

B. Integrating prosodic information into RNNLM

We can extend the basic model structure with extra input
information to improve the model. As the extension method
mentioned in literature[18], we mean to integrate prosodic fea-
tures into RNNLM and structure is shown in Fig. 2. The extra
input vector p(t) represents prosodic features of word w(t) at
time t. So the input vector x(t) = [w(t), s(t − 1), p(t)], and
the output vector y(t) represents the probability distribution
over word history from the vocabulary given the word w(t),
the context vector s(t − 1) and the prosodic feature vector
p(t).

Fig. 2. Recurrent neural network with prosodic features p(t).

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1195 APSIPA ASC 2015



The corresponding equations are modified as follows:

s(t) = f(Wxhw(t) +Whhs(t− 1) +Wphp(t)) (7)

y(t) = g(Wphs(t) +Wpyp(t)) (8)

The training of this RNNLM consists of optimizing the
weight matrices Wxh, Why, Whh, Wph, Wpy. The algorithm
of training refers to literatures[10][19].

IV. EXPERIMENTS

In this paper, we train and validate all the models on a
new corpus of reading English speech – LibriSpeech corpus
[12]. The LibriSpeech corpus contains about 1000 hours of
speech sampled at 16 kHz and derived from audiobooks that
are part of the LibriVox project which is currently responsible
for the creation of approximately 8000 public domain audio
books and the majority are English. The training portion of
the corpus is split into three subsets, with approximate size
100, 360, 500 hours respectively. Meanwhile, the speakers
in the corpus are ranked according to the WER (Word Error
Rate, WER) by a recognition system which is composed of
a bigram language model and an acoustic model trained by
corpus publisher on WSJs si-84 data subset[12], i.e. the lower-
WER speakers are designated as “clean” and the higher-WER
speakers are designated as “other”. The details of the corpus
partitions are shown in the literature[20].

A. Experimental setups

We build a GMM-HMM based speech recognizer for at-
taining the N-best list where the GMM-HMM is trained on
about 960 hours training data from the corpus marked with
“train-clean-100”, “train-clean-360”, “train-clean-500” and the
test set is about 5 hours from “test-clean” in literature[20].
The speech is represented with 25ms frames of MFCCs (Mel-
frequency Cepstral Coefficients, MFCCs), along with their
first- and second-order temporal derivatives.

A 3-gram language model is estimated using all the acoustic
model training transcriptions and the size of the N-best list
on test set is 1000. The WER and perplexity of the 3-gram
are showed in TABLE I. There are 84894 words in the
vocabulary we use in experiments, so the representation of
the current word input is 84894-dimensional. We use one
hidden layer with 300 hidden units to remember the word
history, therefore the context input is 300-dimensional. In the
experiments, we use the “dev-clean” data as the development
set and the learning rate for training each RNNLM is decreased
exponentially, and the initial and final learning rates are set
specific to each network for stable convergence of training.
The number of layers we unfold when conducting BPTT
(Back-propagation Through Time, BPTT) training is set to
4 for all RNNLMs, which refers to literature[19]. When it
comes to the baseline model, we use a conventional RNNLM,
without any prosodic feature inputs, to rescore the N-best
list. In the experiment for baseline RNNLM, the weight of
RNNLM is 0.7 and 3-gram language model is 0.3 which are
derived from best results of development set. The baseline has
85194 (84894+300) input units and 300 units in hidden layer.

The initial learning rate is 0.1. The WER of the baseline is
8.07%.

B. Integrating single different prosodic features into RNNLM

Prosodic features are compared by building RNNLMs in-
tegrated with three different prosodic feature separately. The
WERs and perplexities are summarized in TABLE I.

TABLE I
WERS AND PPLS OF 3-GRAM, RNNLM AND PROSODIC RNNLMS.

Model Descriptions WER(%) PPL
Baseline: 3-gram 10.81 308.09

Baseline: RNNLM 8.07 231.78
RNNLM+Pitch 7.95 211.59

RNNLM+Energy 7.97 212.25
RNNLM+Duration 8.08 214.43

RNNLM+PED 8.03 213.95
RNNLM-INTER 7.69 -

The “Baseline: RNNLM” represents the conventional
RNNLM, “RNNLM+Pitch” means the RNNLM integrat-
ed with pitch features. “RNNLM+Energy” represents the
RNNLM with energy input and the energy feature is only
1-dimensional. “RNNLM+Duration” is the RNNLM integrat-
ed with duration information and its dimensionality is also
one. In order to compare the baseline RNNLM with other
proposed RNNLMs, the weight of 3-gram language model
is fixed on 0.3 for all the experiments. TABLE I shows
that “RNNLM+Duration” achieves a WER of 8.08% which
is almost equal to the WER achieved by baseline, so the
introduction of duration information independently seems to
have no effect on improvements. However, the integration with
pitch features works well and the “RNNLM+Pitch” model gets
a WER of 7.95% which means 1.49% relative improvements
over baseline. Meanwhile, the energy information also works
and “RNNLM+Energy” model achieves a WER of 7.97%,
almost the same improvements with “RNNLM+Pitch”. In
case of perplexities, “RNNLM+Pitch”, “RNNLM+Energy”
and “RNNLM+Duration” models all reduce the perplexity.

C. Integrating combined features into RNNLM

As a result that different prosodic features might be relevant
and they may help each other to provide more efficient infor-
mation, we explore to combine prosodic information for fur-
ther improvements. There are two candidate ways to combine
different prosodic information, i.e., feature-level combination
and model-level combination. The feature-level one is to
combine different features together to form a “bigger” feature,
while the model-level combination is to conduct interpolation
of individual RNNLMs mentioned above, which are integrated
with single different prosodic features. We validate these two
ways and the results are shown in TABLE I.

The model marked with “RNNLM+PED” is constructed
by combining all the three prosodic features into a big-
ger feature which is then used as the extra input for the
RNNLM. Meanwhile, “RNNLM-INTER” means we utilize
the prosodic information through conducting interpolation
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of the three models mentioned in the previous part, i.e.,
“RNNLM+Pitch”, “RNNLM+Energy”, “RNNLM+Duration”,
and the weights of “RNNLM+Pitch”, “RNNLM+Energy” and
“RNNLM+Duration” are 0.3, 0.3 and 0.1 separately, also
derived from the development set. We find that the feature-
level combination does not work well as we expected although
it achieves improvements both in WER and PPL. While the
WER of “RNNLM-INTER” is 7.69%, which means a 4.71%
relative improvement.

V. DISCUSSION AND CONCLUSIONS

From the experimental results given in “RNNLM-INTER”,
we can observe the improvement is larger than the sum of indi-
vidual improvements, which implies that the gains due to each
individual prosodic RNNLM are somewhat complementary,
but not fully additive as expected. It also suggests that different
prosodic information are in fact correlated. Individual prosodic
RNNLMs trained with single kind of prosodic features seem
can preserve the effectiveness of individual prosodic feature
and different RNNLMs catch prosodic information on differ-
ent levels at first. Then the interpolation method, which can
be viewed as a vote mechanism, makes RNNLMs cooperate
with each other to “vote” for decisions that improve the
gains further. Moreover, it is interesting to find that there is
no relation between WER and PPL of “RNNLM+Duration”
model compared with baseline. One of the possible reasons
is that the duration information is more sensitive to the
alignments which are hard to be precise sometimes.

Language models are aimed to provide a predictive proba-
bility distribution for the next word conditioned on the words
seen so far. In addition to the previous words, prosodic
information in the audio stream, which is one kind of parallel
knowledge source to the word(or text) stream, can be used as
complementary information for predicting the next words in
language models. From a multimodal learning perspective[21],
the use of audio information(prosody) refines the text condi-
tion(word), we think this is one of the reasons why prosodic
information improved the RNNLMs as the experimental re-
sults showed, and is also the initial motivation for this paper.

Prosodic patterns of spontaneous speech are more various
while those of reading speech are consistent relatively. There-
fore, prosodic patterns in reading speech are likely to be more
accessible for modeling. Although experiments are conducted
on reading speech and gain improvements, we believe that
prosody is more important and helpful for spontaneous speech
tasks, and more experiments will be conducted on spontaneous
speech data for the future work.

In this paper, different word-level prosodic features are
integrated into RNNLMs and speech recognition performance
improves based on the rescoring method. For further im-
provements, we explore to employ prosodic information com-
binations. Methods of feature-level combination and model-
level combination are validated. The model-level combination
method achieves a 4.71% relative improvement.
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