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Abstract—This paper proposes a new speech recognition
method based on speaker-class (SC) models. In previous studies
based on this approach, Gaussian-mixture-model-based hidden
Markov models (GMM-HMMs) have mainly been used as
acoustic models. In this work, SC models that have deep
neural network (DNN)-based HMM (DNN-HMM) structures
are investigated and used for speaker-independent (SI) speech
recognition. To realize SI speech recognition based on SC models,
technological challenges must be solved so that unsupervised
adaptation can be performed with only one utterance. To address
this problem, we propose a new method of combining DNN
outputs. In our experiments, five of 963 SC models were selected
automatically, and DNN-HMM-based SC models were combined
for each utterance. The results showed that the proposed method
outperformed a baseline DNN-HMM system.

I. INTRODUCTION

Recently, deep neural network (DNN)-based speech recog-

nition has received high attention for its performance in large-

vocabulary continuous speech recognition. However, the vari-

ety of speaker characteristics remains an open issue. To solve

this problem, some speaker adaptation techniques have been

proposed [1]–[3]. Techniques of speaker adaptation are helpful

in terms of recognition performance; however, they require

the extra effort that adaptation data be provided in advance.

The goal of this work is to improve DNN-based recogni-

tion performance using speaker adaptation techniques without

requiring adaptation data. Figure 1 shows the basic idea of

unsupervised adaptation. Adaptation data are recognized once

to derive recognized strings. A speaker-independent (SI) model

is then adapted using adaptation data and recognized strings.

Finally, an input utterance is recognized with the adapted

model. The basic idea of the proposed method is shown in

Figure 2. The two block diagrams are similar; however, an

input utterance is recognized twice in the latter method and

no adaptation data are required. The difference is that in the

second block diagram, adaptation is accomplished by using

the input utterance itself.

To realize SI speech recognition based on speaker adapted

models, technological challenges must be solved so that unsu-

pervised adaptation can be performed with only one utterance.

In general, adaptation methods of DNN require some quantity

of adaptation data because the number of adapted parameters is

high. For example, 10 min of adaptation data were required for

unsupervised adaptation in [1]. Conversely, only a few seconds

of data can be used in the proposed scheme. For example,

utterances with an average duration of 2.27 s are used as test
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Fig. 1. Block diagram of unsupervised speaker adaptation.
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Fig. 2. Block diagram of speaker independent speech recognition based on

adaptation technique.

data in our experiments.

To solve this problem, we utilize a recognition technique

that uses a speaker-class (SC) model. The basic idea of this

technique is that speakers near test speakers are selected from

training speakers and those data are used to create an SC

model. The techniques of SC-based speech recognition can

be divided into two categories. One of the typical methods

is to select cohort speakers for each evaluation speaker using

adaptation data before recognition processing (e.g. [4], [5]).

On the other hand, techniques of speaker-independent speech

recognition using SC models have been proposed (e.g. [6],

[7]). In the latter techniques, all speakers in the training data

are clustered into speaker classes independent of the test

speaker in the training step. In the recognition step, the most

appropriate SC model is selected utterance by utterance and

used for recognition. These works have mainly used Gaussian-

mixture-model-based hidden Markov models (GMM-HMMs).

Recently, Mimura et al. proposed a DNN-HMM-based adap-

tation method that was categorized as the former approach

[8].

We want to improve the recognition performance of DNN-

HMM-based systems by using the latter approach. The sim-

plest technique based on the latter approach involves the

acoustically closest SC model to an input utterance being

selected on the basis of a likelihood criterion. However, one
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Fig. 3. Block diagram of the proposed recognition system.

problem is that a suitable model is not always selected,

especially when the utterance is very short. In our previous

work, a 20.48% word error rate (WER) was obtained with

the single model selection scheme using the GMM-HMM-

based SC model, whereas a 12.40% WER was obtained in

the ideal condition in which the best SC model was selected

manually [9]. With careful attention to the likelihood values

of SC models, an SC model with the best performance did

not always demonstrate the highest likelihood; however, it

was usually ranked relatively high in the likelihood list. In

that context, we propose a method for output combination of

SC-based DNNs. In this method, the observation probabilities

of DNNs are merged by using weight factors. The proposed

method is evaluated with the Corpus of Spontaneous Japanese

(CSJ) task.

The remainder of this paper is organized as follows: Sec.

II introduces the proposed speech recognition technique using

SC models. Section III describes the conditions of the speech

recognition experiments and the conditions of the SC model-

ing. Section IV describes the results of the speech recognition

experiments. Section V provides our conclusions.

II. SPEECH RECOGNITION USING SPEAKER-CLASS

MODELS

A. Overview

Figure 3 shows a block diagram of the proposed recognition

system. The basic idea is that the N best SC models are

selected based on a likelihood criterion and are used for model

combination. However, it is difficult to prepare many SC

models that have a DNN-HMM structure in advance because

this requires a massive amount of calculation time. To save on

calculation time, SC models with a GMM-HMM structure are

used for model selection instead of DNN-HMMs. From the

preliminary experiment, we confirmed that likelihood values

obtained from GMM-HMM and DNN-HMM achieve high

correlation. For this reason, GMM-HMMs can be used for

model selection. After selecting the top N GMM-HMMs,

the corresponding DNN-HMMs are selected. In this case,

the corresponding two models are trained using the same

training speakers. The selected DNN-HMMs are combined by

the proposed combination algorithm. Finally, input speech is

recognized by using the combined DNN-HMM.
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Fig. 4. Conceptual diagram of soft clustering.

B. Speaker-class model

In the proposed system, speaker-class models based on both

GMM-HMM and DNN-HMM structures are used. The former

is used for model selection, and the latter for recognition. The

same clustering algorithm is used for both. The algorithm is

based on soft clustering in which data elements can belong

to more than one cluster, as proposed in [9]. This algorithm

is a modified version of the hard clustering proposed in [10].

The merit of the algorithm in [10] is that no initial parameter

except for the number of clusters is needed. We apply this

algorithm to the soft-clustering method. In soft clustering, only

a cluster radius and the number of clusters are required as

initial parameters.

First, a speaker-dependent (SD) model is prepared for each

training speaker to measure the similarity between training

speakers. All SD models are clustered, and the clustering

result is used to create SC models. In the algorithm, the

cluster with the maximum sum of distances is divided step

by step. Distances between pairs of SD models are calculated

in advance to prepare a distance table that can reduce the

calculation cost. Based on the results of the aforementioned

clustering, a center speaker is calculated for each cluster.

The center speaker is determined by measuring the sum of

distances from each speaker belonging to the cluster and taking

the minimum. Speakers within a predetermined radius of the

center speaker are regarded as members of the cluster. The

concept of clustering is shown in Fig. 4. Using the above

algorithm, some speakers will be assigned to more than one

cluster.

In the algorithm, the distance between SD models must be

calculated. GMM-HMM is used for the structure of the SD

model. The distance between two HMMs M1 and M2 with

the same structure is defined as follows:

D(M1,M2) ,
1

NM

N∑

i=1

M∑

m=1

d(b1im, b2ig(m)), (1)

where N is the number of states, M is the number of mixture

components, and bim is the observation probability at state

i and mixture component m. Note that g(m) is the mixture

permutation function that minimizes the value of the distance.

Transition probability parameters are omitted from the distance

calculation. The SI model is used as the initial model of

each SD model. Therefore, two mixture components that

belong to different SD models but have the same mixture
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component number and state will possess similar acoustic

features. Because of this, we assume that

g(m) = m. (2)

The Bhattacharyya distance measure is employed to calculate

the distance d. This measure is symmetric and is guaranteed

to be nonnegative.

C. Model selection

The top N SC models that are acoustically close to input

speech are selected from a large number of SC models on the

basis of a likelihood criterion. The model selection algorithm

is as follows:

1) Decoding processes are conducted using multiple SC

GMM-HMMs for each utterance.

2) From the results of the above step, the N best SC GMM-

HMMs are selected on the basis of a likelihood criterion.

3) The corresponding DNN-HMMs are selected and used

for output combination.

D. Output combination

We propose a combination algorithm of outputs from mul-

tiple DNNs. The observation probability of DNN-HMM is

calculated as

p(x|si) =
p(si|x)p(x)

p(si)
, (3)

where p(si|x) is the state posterior probability estimated from

the DNN, p(si) is the state prior probability, and p(x) is

the prior probability of input features and can be ignored. In

the proposed technique, multiple observation probabilities are

combined by weighting factors. Assume that pm(x|si) is the

observation probability of the m-th DNN. The probability after

combination is then calculated as

bi(x) =
∑

m

wimpm(x|si). (4)

In addition, weights can be tied across states to reduce the

number of parameters.

In our experiments, two weighting methods, maximum-

likelihood (ML) estimation-based weighting and equal weight-

ing, are tested. In the former method, the weight factor

estimation is carried out for each input utterance. For ML

estimation, a phoneme symbol string must be prepared for

each utterance. To obtain the phoneme string, a decoding

process is accomplished by using an SI model. Note that the

phoneme string contains some errors.

E. Decoding process

A two-pass decoder is used for recognition. A one-pass

algorithm that involves a frame-synchronous beam search is

adopted in the first pass. The search algorithm calculates the

acoustic and language likelihoods to obtain a word graph.

The abovementioned DNN-HMMs in which the observation

probabilities are combined are used as the acoustic models

in the first pass. Moreover, a bigram is used as the language

model. Once the word graph is obtained, rescoring processes

are conducted during the second pass. A trigram is used as

the language model in this step.

III. EXPERIMENTAL SET UP

A. Recognition system

In this section, we describe our recognition system. In

the speech analysis module, a speech signal is digitized at

a sampling frequency of 16 kHz with a quantization size

of 16 bits. The length of the analysis frame is 25 ms, and

the frame period is set to 8 ms. A 25-dimensional feature,

which consists of the log mel-filter bank (FBANK) features

and the log power, is derived from the digitized samples

for each frame. Moreover, the delta and delta-delta features

are calculated from the 25-dimensional feature, so the total

number of dimensions is 75 per frame. The input layer of

the DNN uses 75 coefficients with a temporal context of 11

frames, summing to a total of 825 input features. The DNN

has seven hidden layers with 2048 hidden units in each layer.

The final output layer has 3003 units, corresponding to the

total number of HMM states. The bigram and trigram models

are trained on textual data containing 2668 lectures from the

CSJ, and the total number of words is 6.68M. We used an

evaluation set (testset1) consisting of academic presentations

given by ten male speakers. This is one of the standard test

sets in the CSJ.

B. Speaker-class model

The CSJ is used to train the SI and SC models. The total

number of lectures used for training is 963. Each lecture is

given by one speaker. Therefore, the total number of speakers

is also 963. Note that some speakers gave several lectures.

The total speech length is approximately 203 h. The SI model

is a set of shared-state triphones with 3003 tied states. For

speaker clustering, SD monophonic GMM-HMMs are used

for measuring the distance between training speakers. The SD

model is then trained for each training speaker in advance.

The model structure is a left-to-right HMM with three states,

and the number of mixture components is 12. The 963 SD

models are clustered by the algorithm described in Sec. II.

From the results of the GMM-HMM-based SC models, a

growing number of SC models (more than 300) led to an

improvement in recognition performance [9]. For this reason,

we set the number of speaker classes to 963 (i.e. equivalent to

the number of training speakers), and the speaker radius for

soft clustering is set to 180. After the speaker-clustering step

is completed, SC models are trained using an SI model as the

initial model. The structure of each SC model is the same as

that of the SI model.

IV. EXPERIMENTAL RESULTS

To clarify the effects of the SC model itself, we conducted

preliminary experiments in which the output combination

process was omitted. In these experiments, only one SC model

was selected from the 963 SC models and was used for

recognition. Table I shows WERs of these experiments. In

this table, baseline represents the results of the baseline SI

model. Utterance means that SC model selection was done

for every input utterance. For comparison, the results of model

selection for every evaluation speaker are indicated (speaker).

The average number of utterances per speaker was 122.
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TABLE I
RECOGNITION RESULTS IN WER(%) OF SINGLE SC MODEL SELECTION.

baseline utterance speaker

15.12 15.01 14.86

The results of model selection show better performance than

the results of the baseline. The same SC model was not always

selected for each utterance even if the evaluation speaker was

the same. We considered that there is a variation of acoustic

features for each utterance. For the case of speaker, the best

results could be obtained. This means that it is slightly difficult

to select a suitable SC model by using one short utterance.

Table II shows the recognition results of the proposed

methods. In these experiments, two types of model selection

were applied. In 5SC, that the top five models were selected

for each utterance by a likelihood criterion, and those models

were combined by the proposed output combination algorithm.

In 5SC+SI, five SC models and the SI model were used (six

models in total). For the method of weight tying, weights

were tied across states. In addition, we tested the effects of

transition probability estimation by an ML criterion, in which

all transition probabilities of the combined DNN-HMM were

estimated for each utterance.

In 5SC experiments, the best performance (14.91%) could

be obtained without weight tying and transition estimation.

This result is better than that of the single-SC-model selection

shown in Table I. The method of single-model selection

strongly depends on the performance of model selection.

From the results of the comparison between utterance and

speaker shown in Table I, it is considered that the selection

performance by the likelihood criterion is insufficient. Con-

versely, the proposed method utilizes the outputs of multiple

SC models. This helps relieve the problem of model selection.

Compared between 5SC and 5SC+SI, the latter showed the

better performance. Because the SI model covers a wide range

of speaker characteristics, it is also expected to relieve the

problem of model selection. Finally, 14.87% as the best perfor-

mance could be obtained without weight tying and transition

estimation. To determine if the weight factor estimation by

ML is effective, we tested the equal weighting method where

all weights are set equally in this condition. The WER of

this experiment was 14.89%. The difference between the ML

estimation and the equal weighting method is small.

We summarize the experimental results in Table III. Ac-

cording to the sign test, the difference between baseline and

single SC selection is not statistically significant; however,

both proposed methods are significant at the level of 5%.

The proposed method takes 1.24 times the calculation cost

of the single model selection method except for the cost of

top-N model selection. This is because forward calculation for

DNNs is performed on graphics processing units (GPUs) and

the percentage of forward calculation against total calculation

cost is only 3.4% for each DNN. In contrast, a huge amount

of calculation time is needed for top-N model selection in the

current implementation because a decoding process is carried

out for likelihood calculation. There are some methods to save

model selection time as follows: 1) using GMMs instead of

TABLE II
RECOGNITION RESULTS IN WER(%) OF COMBINATION METHODS.

Type WER (%)

5SC 15.04 14.99 15.15 14.91

5SC+SI 15.05 15.00 15.13 14.87

Transition yes no yes no

Weight tying yes yes no no

TABLE III
SUMMARY OF RECOGNITION EXPERIMENTS.

Type baseline single SC proposed proposed
selection (equal weights) (ML estimation)

WER (%) 15.12 15.01 14.89 14.87

GMM-HMMs, 2) reducing the number of speaker classes, and

3) use of tree-structured speaker clustering [6]. We will try to

reduce the calculation cost in the future.

V. CONCLUSIONS

In this paper, we investigated DNN-HMM-based speech

recognition using SC models. In the proposed method, the

top N of 963 SC models were selected for each utterance

by a likelihood criterion, and the N outputs of DNNs were

merged to be used for the observation probability of DNN-

HMM. In the experiments, five SC models or five SC models

and one SI model were combined. The proposed method

showed significant improvement over the baseline. In contrast,

the single SC selection scheme could not achieve significant

improvement.
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