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Abstract—In speech recognition, it is preferable not to hypoth-
esize the details, e.g., specific age and gender, of a target user.
However, speaker independence is one of the things that degrades
ASR performance. In this work, we propose a speaker adaptation
method to recognize a short time utterance. There have been
several studies on speaker-independent DNN-HMM in which i-
vector is computed, and the additional information is combined
with acoustic features. However, it is difficult to calculate i-vector
accurately or apply speaker adaptation (e.g. f/MLLR) when the
utterance time is short (0.5sec~). In our approach, we calculate
the similarity score between the speaker class and the target
utterance and utilize speaker class information configured in
advance. As a precondition, we restrict the available time period
to the first S0 frames per utterance for the recognition of short
utterances. In experimental tests, we obtained a 4.0% relative
WER gain compared to conventional DNN-HMM.

I. INTRODUCTION

Recently, automatic speech recognition has been used in
many applications as a human-machine interface. However,
since a system can not identify the speaker and speech
environment in advance, there is a problematic reduction in
speech recognition performance owing to a mismatch between
the input speech and the acoustic model’s training data. To
attain the performance required for a recognition system, an
acoustic model that can consider various speakers and speech
environments is essential.

Recently, deep neural networks (DNNs) have been applied
to speech recognition and have outperformed the conventional
Gaussian mixture model-based methods [1]. Several studies
have focused on speaker-independent speech recognition and
adaptation technique using DNN-HMM]2], [3], [4]. In these
methods, the i-vector and speaker code are extracted from an
utterance and these additional information are used to suppress
the variation of acoustic features. However, it is difficult
to calculate i-vector accurately when the utterance time is
short[2]. In [5], more than 90% speaker identification rate
is obtained when the duration of training and test utterances
are more than 2.0 seconds. However, the performance of
speaker identification decreased to 60% if the duration of
training and test utterance are 30 and 0.5 seconds, respectively.
The proposed method is related to the techniques such as
training data clustering [6] and cepstral mean and variance
normalization (CMN/CVN)[7], which have been widely used
in GMM-HMM. In our method, we apply feature normaliza-
tion by using speaker class configured in advance. The main
difference between our method and i-vector-based method is
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the applicability to the short time utterance.

The rest of this paper is organized as follows: In Section 2,
we describe how to utilize training data to obtain the speaker-
class information. In Section 3, we describe the use of multiple
acoustic models constructed by soft-clustering the training
data. The experimental set up is presented in Section 4, and
experimental results are presented in Section 5. We conclude
the paper with a brief summary.

II. SPEAKER CLASS NORMALIZATION
A. Feature Normalization

Differences related to operation environment have made
it not uncommon for acoustic feature mismatch to arise
between a training set and a test set. This mismatch is part of
what degrades performance under a real environment. Several
approaches have been proposed to address this problem, in-
cluding utterance-based cepstral mean normalization (CMN)
and cepstral variance normalization(CVN). CMN and CVN
for the i-th cepstral feature at frame ¢ are

R ci(t)
CVN : &(t) = "= )
o

K2

where 7' is the total frames in the utterance, and p; and 01-2
are mean and variance of the i-th cepstral feature, respectively.
Combining Egs. (1) and (2), we obtain

CMVN : &(t) = 0(15)72# 3)
g;

which suppresses the mismatch of acoustic features and
enables us to build a robust system. We assert that these
normalization methods can also be applied to mismatch among
speakers. However, the completion of an utterance is required
to process the CVN, and this constraint leads to a delay in the
recognition process. In contrast, restriction of usable frames
leads to the inaccurate estimation of statistics. To avoid this
problem, the training data is divided into several classes and
the distribution of cepstral features is modeled by the GMM
with respect to each class[8]. Then, an utterance is classified
to the nearest class using the first 50 frames, and the CMVN
is applied using the mean and variance of the selected class.
In this study, we first investigate how CMVN suppresses
the variation of acoustic features caused by the diversity of
speakers and how to improve the recognition accuracy.
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B. Speaker Class Incorporation

DNN has the ability to model complex distribution. For
this reason, we assume that the CMVN procedure may be
modeled in the network automatically. Thus, we also trained
the network with additional inputs which represents speaker
information. Figure 1 shows an overview of how the DNN
incorporates speaker-class information.

In the training, first we cluster the training data on the basis
of acoustic feature similarity (see Section III.B). After that,
we compute a set of GMM likelihood between speaker-class
GMMs and the first 50 frames of the target utterance. Those
likelihoods are fed into the DNN as a speaker information.
Therefore, the number of units added to the network is
corresponding to the number of clusters.

ITII. SoFT CLUSTERING
A. Utterance to Speaker Clustering

In order to identify the speaker class, we use GMM likeli-
hood in the logarithm domain as follows [9]:

T
L(X|\i) =logp(X|\i) = > log p(a:|Xi), O]
t=1

where T is the available frames in the utterance (in the
experiment, 7" = 50) and )\; is the GMM for class i. Each
GMM was trained by the training data of each class.

B. Division of Training Data

We assume that the generation of a more detailed cluster
would further suppress the variation of acoustic features.
Therefore, we increase the number of classes using soft-
clustering technique shown in [9]. When doing this, we use
overlap-allowed clustering in order to prevent the reduction of
training data in each class.

IV. EXPERIMENTAL SETUP
A. Database

To ensure an age- and gender-independent speech recog-
nition system, we used three types of corpus, summarized
in Table I. The database used for the adult class is the
ASJ+JNAS[10], [11] database consisting of 133 male and 164
female speakers aged 18 to 59. This corpus consists of 20,337
(=33 h) and 25,056 (=44 h) sentences uttered by males and
females, respectively. The database for the elder class is the
S-INAS [12] database consisting of 151 male and 150 female
speakers aged 60 to 90. This corpus consists of 24,081 (=53 h)
and 24,061 (=53 h) sentences uttered by males and females,
respectively. The database for the child class is the CIAIR-
VCV [13] database consisting of 140 male and 138 female
speakers aged 6 to 12. This corpus consists of 7,538 sentences
and 3,993 words (=11 h) and 7,744 sentences and 3,910 words
(=11 h) uttered by males and females, respectively. In the
CIAIR-VCYV corpus, the child class was mainly composed of
speech obtained from the reading of fairy tales. However, the
language model we used in the experiment was trained by
newspapers. As a result, the child class’s out-of-vocabulary
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TABLE I

Training data.

16-19 December 2015

[ AS+INAS
Gender Male Female
Age 18-59 18-59
# speakers 133 164
# utterances 20,337(~ 33h) 25,056(~ 44h)
[ S-INAS
Gender Male Female
Age 60-90 60-90
# speakers 151 150
# utterances 24,081(~ 53h) 24,061(~ 53h)
[ CIAIR-VCV
Gender Male Female
Age 6-12 6-12
# speakers 140 138
# utterances | 7,538(+3993,~ 11h) | 7,744(+3910, =~ 11h)
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rate was 13.8 or 13.6%, while the rates for the elder and adult
class were 0.5% and 2.1%, respectively.

Each corpus contains male and female speech data, so
we divide the training data into six basic classes: adult-male
(AM), adult-female (AF), elder-male (EM), elder-female (EF),
child-male (CM), and child-female (CF). Test data for each
class were 100 sentences. The average number of frames per
utterance is 540 frames. Although our aim is to recognize a
short utterance, there was no appropriate test set to evaluate
speaker adaptation/recognition on short utterance. Therefore,
we restrict the available frames to the first 50 frames per
utterance and calculate speaker class or GMM likelihoods
from those data. The beginning of the speech in utterance was
detected manually. In the experiment, we refer to these initial
speaker class as 6-class-init.

B. Acoustic Models

The speech was analyzed using a 25-ms Hamming window
with a pre-emphasis coefficient of 0.97 and shifted with a 10-
ms frame advance.

1) Syllable-Based Acoustic Model: The basic unit of
Japanese is the syllable and there are 116 context-independent
syllables in total. In this study, we used left context (vowels
and pause: a, i, u, e, o, N, gs, sil), which leads to 928 left
context-dependent syllables in total [14]. Each HMM consists
of four states, so the number of output units increases to 928
X 4. To reduce the number of output units, we used tied 3
state syllables (TC3), which tied the latter three states of the
syllable. If the latter three states are tied, only the first state
is a left context-dependent syllable (or states) and the others
consist of context-independent syllables (or state) (#output
units: 1 x 928 + 3 x 116 = 1276).

2) GMM-HMM: In the context-independent 116 syllable-
based HMM training, we used the EM algorithm, after which
928 context-dependent syllable-based HMMs were trained
using the MAP estimation algorithm. Each HMM has four
states and each distribution is represented with 32 mixture
diagonal Gaussians. When we train the model using all classes,
the distribution of each HMM is represented with 128 mixture
diagonal Gaussians. The feature vector consists of 12 MFCCs
along with their first and second derivatives and the first and
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Fig. 1. Overview of speaker class incorporation for short time utterance speech recognition.

second derivatives of the logarithm power. These were trained
with HTK[15].

3) DNN-HMM: For the DNN-HMM, we used 12 MFCCs
along with their first and second derivatives and the first
and second derivatives of the logarithm power across 11
frames. The features will be normalized to zero mean and unit
variance using all training data except for the speaker-class
based CMVN. The training targets were obtained from the
forced alignment using the corresponding tied 3 state context-
dependent syllable GMM-HMM. To reduce the computational
time, the network was fine-tuned by using a rectifier function
as an activation function. The network had the following
architecture in all experiments: 428 input units, 3 hidden layers
with 2,048 hidden units, and 1,276 output units.

C. Language Model and Decoder

A tri-gram based language model was trained on the
Mainichi newspaper corpus (75 months, 11,533,739 words in
total, vocabulary size of 20,000 words).

As the decoder, we used SPOJUS++(SPOken Japanese
Understanding System) WFST version[16].

V. EXPERIMENTAL RESULTS
A. GMM-HMM and DNN-HMM

(a) GMM-HMM

In the experiment, each class GMM-HMM was trained
using the corresponding speaker class. The experimental re-
sults are listed in Tables II and III for the cases of known
and unknown speaker class, respectively. When we trained
one model using all training data, the average WER was
15.4%. The average WER of the known class model (6
GMMs) was 13.0%. These results show that the diversity of
speakers decreases the performance. The first row in Table III
shows how many frames were used to classify the utterance
into speaker class. When we further increase the number of
clusters (12 class soft), the average WER was 12.9% (all
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frames in an utterance) and 14.4% (50 frames), respectively.
Compared to the 1class (1 GMM, baseline), the average WER
of the 12-class-soft (12 GMMs) using 50 frames got better
performance(14.4%). These results show the effectiveness of
multiple acoustic models based on soft-clustering technique.
(b) DNN-HMM

Table II shows the experimental results for the case of
known class using DNN-HMM. When we trained one model
using all training data, the average WER was 11.2%. The
average WER of known class models (6 DNNs) was also
11.2%. Compared to the GMM-HMM, the DNN-HMM was
more robust against speaker variation.

B. Incorporation of Speaker Class Information

Lastly, we investigated the performance of the DNN-HMM
that incorporated speaker-class information. In this experi-
ment, as shown in Table III, we also used all or 50 frames
of the utterance to identify the speaker class. When we focus
on the 6-class-init with 50 frames, the average WER of
the speaker-class-dependent CMVN was 10.9%, and with the
addition of the likelihood it was 10.8%. These results show the
incorporation of speaker-class information provides better re-
sults than the 1-class DNN-HMM (11.2%) even if the available
time period was only 50 frames. The 6-class-init (DNN) with
likelihood got the best performance, obtained a 4.0% relative
gain compared with 1-class DNN (1 DNN) and 6-class-init
(6 DNNs), that is, from 11.2% to 10.8%. Additionally, we
conducted a significance test between 1 class (baseline, 1
DNN) and 6-class-init (likelihood, 1 DNN). As a result, these
methods are statistically significant at the 10% level (p =
0.084). When we combined the two methods (CMV N and
Likelihood), the average WER of the combination method
was not improved. These results show that the combination of
two approaches does not provide complementary function. We
also conducted experiments using 12-class-soft to investigate
whether further increase of cluster could lead the improvement
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TABLE 11
Word error rate for the GMM-HMM and DNN-HMM (Class: Known)[%].

Model Training data AM AF EM EF CM CF | Ave.
GMM Iclass (1 GMM, baseline) | 9.2 83 104 83 323 242 | 154
6 class init (6 GMMs) 65 64 104 66 268 21.1 | 13.0
1 class (I DNN, baseline) 5.5 4.5 7.1 6.2 235 200 | 11.2
DNN 6 class init (6 DNNs) 6.1 4.9 7.1 53 228 21.1 | 11.2
TABLE III
Word error rate for the GMM-HMM and DNN-HMM (Class: Unknown)[%].
Model Training data All frames 50 frames
AM AF EM EF CM CF Ave. AM AF EM EF CM CF Ave.
GMM 6 class init (6 GMMs) 6.8 7.5 112 9.1 28.0 223 14.1 8.3 102 17.2 82 289 239 | 16.1
12 class soft (12 GMMs) | 7.1 5.9 8.8 7.0 284 204 12.9 8.7 6.0 11.3 81 289 237 | 144
.. . All frames 50 frames
Model Training data Speaker-class Incorporation Ave. AN NG EM  EF CM CF T Ave.
CMVN(class) 10.8 5.5 43 6.5 53 233 202 | 109
6 class init (1 DNN) Likelihood 10.8 5.3 4.3 6.7 52 231 199 | 10.8
DNN CMVN(class)+ Likelihood 11.1 5.5 4.3 7.0 6.5 237 205 | 11.2
CMVN(class) 18.0 5.5 4.7 6.8 49 244 209 | 11.2
12 class soft (I DNN) Likelihood 10.9 5.7 4.7 7.1 6.5 233 18.7 | 11.0
CMVN(class)+Likelihood 11.3 5.6 4.2 7.0 52 250 212 114

as same as GMM-HMM. The performance of 12-class-soft (1
DNN) shows almost the same as the 6-class-init (1 DNN)
unlike 12 class soft clustering GMMs. These results show
the increase of clusters could represent more detailed speaker
information. On the other hand, it suffers the lack of training
data to achieve better generalization. The average WER of
CMVN using 12-class-soft also decreased to 18.0%. This is
considered that the increase of speaker class makes it difficult
to estimate adequate mean and variance, because the number
of training data for specific classes may decrease.

TABLE IV
Word error rate for the DNN-HMM (Class: Known).
Model Training data Ave.
CMVN(all frames in utterance) | 10.2 %
DNN CMVN(50 frames in utterance) | 20.6 %

We conducted several additional comparisons as a reference.
Table IV shows the average WER obtained under various
CMVN conditions for the case of known speaker-class. The
procedure to train the DNN is equal to other speaker-class
based CMVN except for normalization unit. When we applied
CMV N per utterance with available number of frames 1" =
all frames (about 640 frames), the average WER was 10.2%
(oracle case). However, the CMVN using only 50 frames
degraded the accuracy (20.6%), making it unsuitable for use
with short time utterance. It is obvious that our proposed
methods provide sufficient speaker information even if the
uttered time is short.

VI. CONCLUSION

In this work, we investigated the use of speaker-class infor-
mation to train the DNN. In experiments, both class-dependent
CMVN and the additional input of speaker class information
to the network outperformed the conventional DNN-HMM.
These results demonstrate that speaker class, which was esti-
mated from only the first 50 frames in an utterance, provides
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important information to suppress the diversity of speakers.
However these experiments are conducted under clean and
read speech, and the gains are relatively small. In the future,
this approach is also applicable to actual environment such as
noisy speech.

REFERENCES
(1]

G. Hinton, et al., “Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups,” Signal Processing

Magazine, IEEE, pp. 82-97, 2012.

Y. Liu, P. Karanasou, T. Hain, “An investigation into speaker informed

DNN front-end for LVCSR,” ICASSP, pp. 4300-4304, 2015.

G. Saon, H. Soltau, D. Nahamoo, M. Picheny, “Speaker adaptation of

neural network acoustic models using i-vectors,” ASRU, pp. 55-59, 2013.

O. A. Hamid, H. Jiang, “Fast speaker adaptation of hybrid NN/HMM

model for speech recognition based on discriminative learning of speaker

code,” ICASSP, pp. 7942-7946, 2013.

M. Tsujikawa, T. Nishikawa, T. Matsui, “Study on i-vector based speaker

identification for short utterances,” IEICE Technical Report, pp. 65-70,

2015 (in Japanese).

M. Padmanabhan, L.R. Bahl, D. Nahamoo, M.A. Picheny, “Speaker

clustering and transformation for speaker adaptation in large-vocabulary

speech recognition systems,” ICASSP, pp. 701-704, 1996.

O. Viikki, D. Bye, K. Laurila, “A recursive feature vector normalization

approach for robust speech recognition in noise,” ICASSP, pp. 733-736,

1998.

A.Y. Nakano, S. Nakagawa, K. Yamamoto, “Distant speech recognition

using a microphone array network,” IEICE Trans. on information and

systems, pp. 2451-2462, 2010.

D. Enami, F. Zhu, K. Yamamoto, S. Nakagawa, “Soft-clustering technique

for training data in age-and gender-independent speech recognition,”

APSIPA, pp. 1-4, 2012.

[10] ASJ, http://research.nii.ac.jp/src/ASJ-JIPDEC.html

[11] K. Itou, et al., “JNAS: Japanese speech corpus for large vocabulary
continuous speech recognition research,” The journal of the acoustical
society of Japan(E), pp. 199-206, 1999.

[12] S-JNAS, http://research.nii.ac.jp/src/S-JNAS.html

[13] CIAIR-VCYV, http://research.nii.ac.jp/src/CIAIR-VCV.html

[14] S. Nakagawa, K. Hanai, K. Yamamoto, N. Minematsu, “Comparison
of syllable-based HMMs and triphone-based HMMs in Japanese speech
recognition,” ASRU, 1999.

[15] HMM Toolkit, http://htk.eng.cam.ac.uk/

[16] Y. Fujii, K. Yamamoto, S. Nakagawa, “Large vocabulary speech recog-

nition system: SPOJUS++,” MUSP, pp. 110-118, 2011.

(2]
[3]
(4]

[3]

(6]

(71

(8]

(91

APSIPA ASC 2015





