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Abstract—Image processing algorithms used in surveillance
systems are designed to work under good weather conditions.
For example, in a rainy day, raindrops are adhered to camera
lenses and windshields, resulting in partial occlusions in acquired
images, and making performance of image processing algorithms
significantly degraded. To improve performance of surveillance
systems in a rainy day, raindrops have to be automatically
detected and removed from images. Addressing this problem,
this paper proposes an adherent raindrop detection method
from a single image which does not need training data and
special devices. The proposed method employs image segmen-
tation using Maximally Stable Extremal Regions (MSER) and
qualitative metrics to detect adherent raindrops from the result of
MSER-based image segmentation. Through a set of experiments,
we demonstrate that the proposed method exhibits efficient
performance of adherent raindrop detection compared with
conventional methods.

I. INTRODUCTION

Surveillance systems are used to detect, recognize and track
objects from video sequences and understand their behaviors
such as access control security, person identification at a
distance, crowd flux statistics, anomaly detection and alarm-
ing, traffic surveillance, etc. [1]. Although the surveillance
systems are mostly used in outdoor situations, image pro-
cessing algorithms used in surveillance systems are designed
to work under good weather conditions. For example, in a
rainy day, raindrops are adhered to camera lenses and wind-
shields. Such adherent raindrops result in partial occlusions
in acquired images, making performance of image processing
algorithms significantly degraded. To improve performance
of surveillance systems in a rainy day, raindrops have to
be automatically detected and removed from images. In this
paper, we focus on detecting adherent raindrops in an image.
There are some works on raindrop detection. Garg and

Nayar [2] analyzed physical properties of rain, modeled rain
by its dynamics and photometry and detected it from videos.
Zhang et al. [3] extended the rain streak detection approach
[2] by using both temporal and chromatic properties of rain in
video. Barnum et al. [4] developed a model of the shape and
appearance of a single rain streak. Kang et al. [5] removed
rain streaks using a single image. The above works aimed
to detect falling raindrops whose properties are significantly
different from those of adherent raindrops.
Kurihata et al. [6] proposed an adherent raindrop detection

method using principal component analysis, called eigendrop.

Wu et al. [7] generated a raindrop saliency map by ana-
lyzing color, texture and shape characteristics of raindrops
and detected raindrops using the saliency map. Halimeh and
Roser [8] and Roser and Geiger [9] developed a photometric
model of adherent raindrops and detected adherent raindrops
from video sequences using the model. You et al. [10] also
modeled adherent raindrops and detected raindrops based on
the motion and the intensity temporal derivatives of video
sequences. Yamashita et al. [11] detected raindrops based on
the difference between stereo images. Yamashita et al. [12]
also detected raindrops using a moving camera. The adherent
raindrop detection methods mentioned above need training
data, video sequences or special devices, resulting in the
limited range of applications.
Addressing the above problem, we propose an adherent

raindrop detection method from a single image which does
not need training data and special devices. The proposed
method employs image segmentation using Maximally Stable
Extremal Regions (MSER) [13] and qualitative metrics to
detect adherent raindrops from the result of MSER-based
image segmentation. Through a set of experiments, we demon-
strate that the proposed method exhibits efficient performance
of adherent raindrop detection compared with conventional
methods.

II. RAINDROP DETECTION METHOD

An adherent raindrop on the glass surface in front of a
camera becomes a local fish-eye lens refracting light from
a wide range of angles into the camera and occludes the
region behind as shown in Fig. 1. By analyzing the appearance
of a variety of raindrops, we found 4 features of raindrops:
(i) the region of a raindrop has a different pixel intensity
from neighbor regions, (ii) the region of a raindrop has
monotonous variation of texture, (iii) the shape of a raindrop
is approximated to an ellipse and (iv) the region of a raindrop
is blurred. We detect raindrops in an image based on the above
features by the 3 steps: (A) raindrop candidate detection using
MSER, (B) evaluation using ellipse fitting and (C) evaluation
using 2D Gaussian fitting. The detail of each step is described
in the following.
(A) Raindrop candidate detection using MSER
We employ the image segmentation method using MSER

[13] to detect raindrop candidates from an image. In the
conventional methods [8], [9], the SURF feature detector is
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(a) (b)

Fig. 1. Example of adherent raindrops: (a) original image and (b) enlarged
view of the red-colored region in (a).

(a) (b)

Fig. 2. Image segmentation using MSER for finding raindrop candidates: (a)
original image and (b) MSERs with colored labels.

used to detect raindrop candidates. However, SURF does not
always find all the raindrops from the image and the number
of missed detections of SURF is more than that of MSER.
We generate contiguous binarized images from the input

grayscale image by changing the threshold th from 0 to
255 (or from 255 to 0). As a result, all the pixels in a
sequence of binarized images vary from white to black (or
from black to white). Some white regions (or black regions)
are observed in the process of changing the binarization
threshold. Let Q1, Q2, · · · , Qth, · · · be a sequence of extremal
regions. MSER Qth∗ is obtained with the threshold th∗ which
is defined by

th∗ = arg min
th

|Qth+Δ \Qth−Δ|/|Qth|, (1)

where Qth+Δ \Qth−Δ is a difference set between Qth+Δ and
Qth−Δ, |Qth| is an area of Qth and Δ is a parameter.
Fig. 2 shows an example of detected MSERs with a colored

label. The detected MSERs satisfy features (i) and (ii), while
there are a lot of false detections observed as shown in Fig. 2
(b). In the following steps, we identify the regions satisfying
features (iii) and (iv) from the detected MSERs.
(B) Evaluation using ellipse fitting
We select the regions satisfying feature (iii) from the can-

didates by ellipse fitting. Consider the MSER Q, where the
number of pixels in Q is N and the pixel coordinate in Q is
mi = [x y]T (1 ≤ i ≤ N ). First, the covariance matrix Σ of

Q is calculated by

Σ =
1

N − 1

N∑
i=1

(mi − μ)(mi − μ)T , (2)

where μ is a mean of pixel coordinates defined by

μ = [μx μy]
T =

1

N

N∑
i=1

mi. (3)

The direction of major and minor axes is obtained from the
eigen vectors of the covariance matrix Σ. The length of the
major axis, ma, and the minor axis, mi, is defined by the
length from end to end in Q for each axis.
Next, we evaluate ellipse fitting by F-measure [14] between

Q and the ellipse. The F-measure F is defined by the harmonic
mean of precision and recall which considers the area ratio of
the ellipse within Q and the area ratio of Q within the ellipse.
The ellipse and Q are completely overlapped if the F-measure
is 1. We select the regions from the candidates Q which satisfy
the following condition:

F > th1 and
ma

mi
> th2. (4)

Note that we introduce th2 to remove the candidate whose
shape likes a line.
(C) Evaluation using 2D Gaussian fitting
We select the regions satisfying feature (iv) from the

candidates by 2D Gaussian fitting. Fig. 3 shows the shape
of pixel intensities of raindrops. The shape of raindrops is
classified into 2 types such as Fig. 3 (c) and (d) from our
empirical observation. In the case of Fig. 3 (c), the region
has a high pixel intensity and is blurred, i.e., the shape is
convex upward. In the case of Fig. 3 (d), the region has a
low pixel intensity and is blurred, i.e., the shape is convex
downward. In other cases such as Fig. 3 (e) and (f), the pixel
intensities are randomly distributed. Hence, we employ 2D
Gaussian fitting to identify raindrops, e.g., Fig. 3 (c) and (d),
from the candidates Q. A 2D Gaussian can be used to model
an arbitrary convex shape with parameters such as the center,
variance and rotation. To address a raindrop widely spread,
we also employ a logarithm of a 2D Gaussian for modeling
the raindrop.
First, the pixel intensities in Q are normalized to [0 1] by

P (mi) =
Q(mi)−Qmin

Qmax −Qmin
, (5)

where P is a normalized MSER, Qmin is the minimum
intensity value in Q and Qmax is the maximum intensity value
in Q.
Next, the shape of P is normalized so as to be convex

upward by

P (mi) =

{
P (mi) μ(Pinner) < μ(Pouter)

1− P (mi) otherwise
, (6)

where μ(Pinner) indicates a mean of pixel intensities around
the center of P and μ(Pouter) indicates a mean of pixel
intensities around the boundary of P .
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Fig. 3. The shape of pixel intensities in raindrop candidates: (a) original image,
(b) examples of detected raindrop candidates by MSER, (c) and (d) the shape
of pixel intensities on a raindrop and (e) and (f) the shape of pixel intensities
on other region.

Then, a 2D Gaussian G(mi) is fitted to the normalized
MSER P , which is defined by

G(mi) =
1

2π|Σ′| 12 exp(−
1

2
(mi−μ′)TΣ′−1(mi−μ′)), (7)

where μ′ is a mean of pixel coordinates in P calculated by

μ′ = [μ′
x μ′

y] =
1

N

N∑
i=1

mi. (8)

Σ′ indicates a covariance matrix defined by

Σ′ =
[

σ2
x ρσxσy

ρσxσy σ2
y

]
, (9)

where σ2
x and σ2

y indicate variances for x- and y-axes, respec-
tively, ρ indicates a correlation coefficient between x and y.
The pixel intensities of G(mi) are also normalized to [0 1]
as well as Q. In addition, we calculate a logarithm of G(mi)
by

Ĝ(mi) = ln{G(mi)}. (10)

The pixel intensities of Ĝ(mi) are also normalized to [0 1].

MSER regionFitting result

)( iG m

)(ˆ iG m

P

P

Fig. 4. Results of 2D Gaussian fitting for raindrop candidates.

Finally, we select the candidates P as raindrops if P satisfies
the following condition:

N∑
i=1

(P (mi)−G(mi))
2 <

N∑
i=1

(P (mi)− P̄ )2

or
N∑
i=1

(P (mi)− Ĝ(mi))
2 <

N∑
i=1

(P (mi)− P̄ )2, (11)

where P̄ is a mean of pixel intensities of P .
Fig. 4 shows examples of P fitted to G(mi), Ĝ(mi) and P̄ ,

respectively. The red-colored points indicate P (mi) and the
blue-colored points indicate a fitted function. The raindrops
such as Fig. 3 (c) and (d) are well fitted to G(mi) and Ĝ(mi),
while other regions such as Fig. 3 (e) and (f) are fitted to the
plane P̄ .
Through the steps from (A) to (C), we can detect raindops

from a single image.

III. EXPERIMENTS AND DISCUSSION

This section describes the performance evaluation of the
proposed method using the images with adherent raindrops.
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Input image Ground truth MSER Proposed (A)+(B)+(C)Eigendrop SURF

Fig. 5. Results of raindrop detection using the conventional and proposed methods, where the red-colored region indicates the region having raindrops, the
blue-colored region indicates false detection and the green-colored region indicates missed detection.

An acrylic board is located in front of a camera, where the
distance between the camera and the board is 10∼20cm,
waterdrops are adhered to the acrylic board and 13 images
are taken by the camera, where 9 images are used in training
for conventional methods and 4 images are used in testing
for all the methods. We evaluate missed detection rates and
false detection rates of the raindrop detection methods. In this
experiment, we compare the accuracy of the proposed method
with that of Eigendrop [6] and SURF [8]. Eigendrop is created
by 9 training images, where about 100 raindrops are included
in each image. In the proposed method, we employ parameters
for Eq. (7): th1 = 0.8 and th2 = 3.
Fig. 5 shows input images, ground truth data of raindrops,

detection results of the conventional and proposed methods,
where the ground truth data is manually created. The red-
colored region indicates the region having raindrops, the
blue-colored region indicates false detection and the green-
colored region indicates missed detection. Eigendrop has a
lot of missed regions compared with SURF and MSER, and
SURF has more missed regions than MSER. As a result,
MSER exhibits efficient performance for finding raindrop can-
didates compared with other methods. The proposed method
(A)+(B)+(C) selects correct raindrops from results of image
segmentation using MSER.
Table I summarizes missed and false detection rates for each

method. To confirm performance of each step in the proposed
method, we compare the accuracy of a variety of the proposed
methods such as (A), (A)+(B), (A)+(C), (A)+(B)+(C) and
(A)+(C)+(B). Eigendrop has high missed detection rate and

high false detection rate compared with other methods, since
the accuracy is heavily depending on the training data. SURF
exhibits better performance than Eigendrop, while the missed
detection rate of SURF is significantly higher than (A) MSER.
The missed detection rate is almost the same in a variety of the
proposed methods, since the steps (B) and (C) exhibit efficient
performance to remove candidates which do not include any
raindrop. The combined use of the steps (B) and (C) makes it
possible to improve the false detection rates.
As observed above, the proposed method can detect almost

all raindrops in the image from the single image, although
the proposed method does not need training data, video
sequences and special devices to detect raindrops in the image.
After detecting raindrops using the proposed method, we will
remove detected raindrops using the inpainting technique [15].
In addition, we confirmed that the proposed method exhibits
efficient performance of adherent raindrop detection in practi-
cal situations such as a large amount of video sequences taken
by an in-vehicle camera. These results cannot be included in
this paper due to limitations of space.

IV. CONCLUSION

This paper proposed an adherent raindrop detection method
using MSER. The proposed method employs qualitative met-
rics to detect adherent raindrops from the result of MSER-
based image segmentation. Through a set of experiments,
we demonstrated that the proposed method exhibits efficient
performance of adherent raindrop detection compared with the
conventional methods.
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TABLE I
SUMMARY OF MISSED DETECTION RATES AND FALSE DETECTION RATES

FOR EACH METHOD.

Method Missed rate False rate

Image 1

Eigendrop 66.7% 98.2%
SURF 62.3% 86.0%

MSER (A) 7.2% 83.2%
(A)+(B) 14.5% 42.2%
(A)+(C) 20.3% 15.7%

(A)+(B)+(C) 21.7% 6.6%
(A)+(C)+(B) 21.7% 6.6%

Image 2

Eigendrop 68.3% 92.9%
SURF 39.4% 74.8%

MSER (A) 11.3% 51.2%
(A)+(B) 21.1% 12.7%
(A)+(C) 22.5% 8.1%

(A)+(B)+(C) 26.0% 2.5%
(A)+(C)+(B) 26.0% 2.5%

Image 3

Eigendrop 50.0% 96.4%
SURF 54.2% 53.8%

MSER (A) 12.5% 72.5%
(A)+(B) 16.7% 21.4%
(A)+(C) 16.7% 14.4%

(A)+(B)+(C) 16.7% 3.2%
(A)+(C)+(B) 16.7% 3.2%

Image 4

Eigendrop 47.3% 96.9%
SURF 33.8% 46.9%

MSER (A) 6.8% 79.6%
(A)+(B) 20.3% 44.3%
(A)+(C) 18.9% 31.8%

(A)+(B)+(C) 21.6% 22.4%
(A)+(C)+(B) 22.4% 21.6%
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