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Abstract—The advanced front-end (AFE) for automatic speech
recognition (ASR) was standardized by the European Telecom-
munications Standards Institute (ETSI). The AFE provides
speech enhancement realized by an iterative Wiener filter (IWF)
in which a smoothed FFT spectrum over adjacent frames is used
to design the filter. We have previously proposed robust time-
varying complex AR (TV-CAR) speech analysis and evaluated
the performance of speech processing such as F0 estimation and
speech enhancement. TV-CAR analysis can estimate more accu-
rate spectrum than FFT, especially in low frequencies because of
the nature of the analytic signal. In addition, the TV-CAR can
estimate more accurate speech spectrum against additive noise.
In this paper, the time-invariant version of wide-band TV-CAR
analysis is introduced to the IWF in the AFE and is evaluated
using the CENSREC-2 database.

I. INTRODUCTION

Since speech recognition is commonly used in realistic
noisy environment, performance can be seriously degraded
by additive noise or reverberation. Speech recognition that is
robust against additive noise can be classified into the fol-
lowing two approaches. The first uses speech enhancement to
reduce additive noise from noise-corrupted speech. The other
uses a robust feature vector against additive noise. The former
methods include spectral subtraction (SS)[1], the iterative
Wiener filter(IWF)[2][3], the minimizing mean square error
(MMSE) approach[4], and the Vector Taylor series(VTS)[5].
The latter methods include RASTA[6], Power-normalized
Cepstral Coefficients (PNCC)[7], GMM adaptation[8], double
auto-correlation spectrum expression [9], extended weighted
linear prediction (XLP) analysis[10], phase MFCC[11], phase
spectrum-based group delay spectrum[12], and q-LSMN[13].

SS is a very simple method in which a noise spectrum
is estimated and then reduced from observed speech in the
frequency domain. Although the SS method suffers from
musical noise generation, it is commonly used since it can be
easily implemented due to its simple structure. In addition, it
is suitable for speech recognition applications that do not have
to re-synthesize speech. The VTS method modifies a spectrum
using a non-linear mismatch function between a model in a
realistic environment and a model in an ideal environment.
The PNCC method is based on auditory processing that intro-
duces power-based non-linearity and reduces noise using non-
linear filtering and temporal masking. P.Alku,et.al. reported
experimental results for large vocabulary speech recognition
obtained using the MFCC converted from a spectrum based on

weighted linear prediction (WLP) or extended weighted linear
prediction (XLP)[10]. While MFCC and RASTA are spectral
parameters based on amplitude characteristics, studies focused
on phase characteristics are currently being conducted. For
example, Paliwal, et. al. reported that phase characteristics can
be possibly used for speech recognition. They demonstrated
experimental results with MFCC based on synthetic speech
by long term phase characteristics[11]. Yamamoto, et. al. per-
formed speech recognition using group delay spectral features
based on a phase spectrum[12].

Furthermore, the European Telecommunications Standards
Institute (ETSI) has standardized the advanced front-end
(AFE)[14] for automatic speech recognition (ASR) in which a
smoothed FFT spectrum-based IWF[3] is adopted. The method
is regarded as the reference for the front-end of ASR.

We have proposed an IWF on the basis of MMSE-based
complex LPC analysis[15]. In [15], the complex LPC analysis
for the analytic signal was introduced to estimate the power
spectra rather than LPC analysis. Complex LPC analysis can
estimate more accurate spectrum in low frequencies than
the real one because of the nature of the analytic signal.
We have also proposed MMSE-based time-varying complex
auto-regressive (AR) speech analysis[16] that can estimate
time-varying complex AR spectrum since AR coefficients are
represented by complex basis expansion as a function of
time. Complex LPC analysis is realized by setting the basis
expansion order to 1[15]. We have proposed robust time-
varying complex AR (TV-CAR) analysis based on an extended
least square (ELS)[17] in which an additional whitening filter
is introduced to realize unbiased estimation. The robust ELS
method can estimate more accurate speech spectrum against
additive noise.

In this paper, a time-invariant version of wide-band TV-CAR
analysis for an analytic signal is introduced rather than FFT
onto the AFE and performance is evaluated. MMSE-based
real-valued AR and wide-band MMSE-based complex-valued
AR analysis are evaluated. CENSREC-2[18][19] is used for
evaluation and the Hidden Markov Model (HMM) Tool Kit
(HTK)[20] is used to realize a HMM speech recognizer. The
CENSREC-2 database includes a task for continuous digit
recognition in real-car-driving environments. In-car speech
data is collected in a specially equipped vehicle under 11
environmental conditions. The speech recorded by a micro-
phone attached to the ceiling above the driver’s seat is used for
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evaluation. There are four evaluation environments for speech
recognition depending on whether the recording environments
and microphones used between training and testing data match.

II. ETSI AFE
A. Wiener Filter

The key factor of the ETSI AFE is the Wiener filter. In this
subsection, the Wiener filter is briefly explained. We assume
that a clean speech signal s(t) can be estimated by filtering
an observed noise-corrupted signal x(t) = s(t) + n(t) with
optimal filter h(τ), where n(t) is additive noise and x(t) is
the observed speech signal. The estimated speech using filter
h(τ) is expressed as follows.

ŝ(t) =

∫ ∞

0

h(τ)x(t− τ)dτ (1)

The filter is designed so as to minimize the means squared
error (MSE) between the estimated signal and the clean speech
s(t). hopt(τ ) is designed so as to minimize the following
criterion.

V [h(τ)] = E[(s(t)− ŝ(t))2] (2)

The Wiener filter hopt(τ ) is designed as follows.

H(ω) =
Sss(ω)

Sss(ω) + Sww(ω)
(3)

In Eq(3), Sss(ω) and Sww(ω) are spectrum of clean speech
and additive noise, respectively. These spectra are commonly
estimated by LPC analysis. Since clean speech cannot be
observed, the spectrum Sss(ω) is estimated using the observed
signal, and then the filter is designed and the enhanced speech
ŝ(t) is used to re-estimate Sss(ω). The iteration indicates the
number of stages (commonly two) in the Wiener filter.

B. ETSI AFE

In this subsection, the ETSI AFE is explained. The pro-
cedure consists of speech enhancement, waveform processing,
feature extraction, blind equalization, compression, and encod-
ing. In the AFE, a two-stage Wiener filter is performed in every
frame for speech enhancement. In the first stage, speech and
noise power spectrum are estimated by FFT using voice active
detection (VAD) and the Wiener filter is designed according to
Eq.(3) using the estimated spectra. While FFT is introduced by
estimating the speech spectrum in the AFE, TV-CAR analysis
is introduced in the proposed method. The filter coefficients are
converted into mel-frequencies, and convolution is performed
to generate enhanced speech. In the second stage, the output
signal obtained in the first stage is set to the input signal and
speech enhancement is performed again. Finally, DC offset is
removed from the enhanced speech.

III. TV-CAR SPEECH ANALYSIS

In this paper, time-invariant real and complex-valued anal-
ysis are introduced as a spectrum estimator for the Wiener
Filtering. Since the TV-CAR analysis includes the real-valued
and time-invariant analysis, the TV-CAR analysis is explained
for convenience.

A. Analytic speech signal

The target signal of the TV-CAR method is an analytic
signal which is a complex-valued signal defined as follows.

yc(t) =
x(2t) + j · xH(2t)√

2
(4)

where yc(t), x(t), and xH(t) denote an analytic signal at time
t, an observed signal at time t, and a Hilbert transformed signal
for the observed signal, respectively. Note that the superscript c
denotes a complex value in this paper. Analytic signals provide
the spectra over the range (0, π); thus they can be decimated
by a factor of two. 2t indicates this decimation. The term
1/
√
2 is multiplied to adjust the power of an analytic signal

to that of the observed signal.

B. Time-varying complex AR model

The TV-CAR model is defined as follows.

YTV CAR(z
−1) =

1

1 +
I∑

i=1

L−1∑
l=0

gci,lf
c
l (t)z

−i

(5)

where I is the AR order. The input-output relation is defined
as follows.

yc(t) = −
I∑

i=1

aci (t)y
c(t− i) + uc(t)

= −
I∑

i=1

L−1∑
l=0

gci,lf
c
l (t)y

c(t− i) + uc(t) (6)

where uc(t) and yc(t) are taken as a complex-valued input and
an analytic speech signal, respectively. In the TV-CAR model,
the complex AR coefficient is modeled by a finite number
of arbitrary complex basis. Note that Eq.(6) parameterizes
the AR coefficient trajectories that continuously change as a
function of time so that the time-varying analysis is feasible
to estimate continuous time-varying speech spectrum. In addi-
tion, the complex-valued analysis facilitates accurate spectral
estimation in low frequencies. Therefore, this feature allows
more appropriate Wiener filtering. Eq.(6) can be represented
in vector-matrix notation as follows.

ȳf = −Φ̄f θ̄ + ūf

θ̄T = [ḡT0 , ḡ
T
1 , · · · , ḡTl , · · · , ḡTL−1]

ḡTl = [gc1,l, g
c
2,l, · · · , gci,l, · · · , gcI,l]

ȳTf = [yc(I), yc(I + 1), yc(I + 2), · · · , yc(N − 1)]

ūT
f = [uc(I), uc(I + 1), uc(I + 2), · · · , uc(N − 1)]

Φ̄f = [D̄f
0 , D̄

f
1 , · · · , D̄

f
l , · · · , D̄

f
L−1]

D̄f
l = [d̄f1,l, · · · , d̄

f
i,l, · · · , d̄

f
I,l]

d̄fi,l = [yc(I − i)f c
l (I), y

c(I + 1− i)f c
l (I + 1),

· · · , yc(N − 1− i)f c
l (N − 1)]T

where N is the analysis interval, ȳf is an (N − I, 1) column
vector whose elements are analytic speech signals, θ̄ is an (L ·
I, 1) column vector whose elements are complex parameters,
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and Φ̄f is an (N−I, L·I) matrix whose elements are weighted
analytic speech signals by the complex basis. The superscript
T denotes transposition.

C. MMSE-based algorithm

MSE criterion is defined as follows.

r̄f = [rc(I), rc(I + 1), · · · , rc(N − 1)]
T

= ȳf + Φ̄f θ̂ (7)

rc(t) = yc(t) +

I∑
i=1

L−1∑
l=0

ĝci,lf
c
l (t)y

c(t− i) (8)

E = r̄Hf r̄f = (ȳf + Φ̄θ̂)H(ȳf + Φ̄θ̂) (9)

where ĝci,l is the estimated complex parameter, rc(t) is an
equation error, i.e., complex AR residual, and E is the MSE
for the equation. To obtain optimal complex AR coefficients,
we minimize the MSE criterion. Minimizing the MSE criterion
of Eq.(9) with respect to the complex parameter leads to the
following MMSE algorithm.

(Φ̄H
f Φ̄f )θ̂ = −Φ̄H

f ȳf (10)

Here, the superscript H denotes Hermitian transposition. After
solving the linear equation of Eq.(10), we obtain the complex
AR parameter (aci (t)) at time t with the estimated complex
parameter ĝci,l.

IV. PROPOSED AFE
In this paper, the Wiener filter is modified using the spectra

in Eq.(3) estimated by MMSE-based TV-CAR analysis. The
estimated spectrum is obtained by Eq.(5) with the estimated
complex parameter gci.l. The gain of the spectrum is deter-
mined by the corresponding power of the AR residual[15].

Although the complex analysis can estimate more accurate
speech spectrum in low frequencies, it suffers from low
estimation in high frequencies because of the aliasing of
an analytic signal. In the AFE, 16kHz speech is input and
uniformly divided into two sub-band signals by QMF whose
frequency response is shown in Figure 1. Note that the lower
band signal is Wiener filtered and the higher band signal is
not. To remove the influence of the aliasing, complex analysis
is performed to the input 16kHz wide-band speech, and the
spectrum for the Wiener filter is extracted. The Wiener filtering
is carried out by the wide-band analysis as in Figure 2. The
procedure is as follows.

(1-w)Wide-band analysis is carried out with the 16KHz
wide-band signals.
(2-w)Narrow band speech power spectrum is extracted.
(3)The Wiener Filter (WF) is designed by using the narrow
band power spectrum by Eq.(3),
(4)The WF is operated.

The extraction (2-w) is realized as follows. The estimated
power spectrum from 0-4kHz is extracted and multiplied by
the frequency response of the low pass filter of the QMF, as
shown by the blue line in Figure 1. Note that less distorted
spectrum can be obtained by wide-band complex analysis
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Figure 1: QMF frequency response
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Figure 2: Blockdiagram of wide-band analysis

using the low pass filter. The wide-band signal cannot be
obtained by the first stage of the Wiener filter since the
higher band is not emphasized; thus, the wide-band analysis
is introduced only in the first stage and TV-CAR analysis is
performed for the 8kHz sampled emphasized speech in the
second stage. Since the time-varying analysis is difficult to
introduce in the frequency-domain Wiener filtering framework,
time-invariant analysis is implemented by setting the complex
basis expansion order L to 1. The corresponding real-valued
analysis can be easily implemented by setting L to 1 and input
signal as the input speech signal rather than the analytic signal.

V. EXPERIMENTS

The CENSREC-2 speech database[18] was used for evalu-
ation. It consists of four types of data from various internal
car environments (Table 1) as follows. Record environment
indicates a difference between the learning data and evaluation
data.

Table 1: Types of data in CENSREC-2
Microphone Record environment

Condition1 Matched Matched
Condition2 Matched not Matched
Condition3 not Matched Matched
Condition4 not Matched not Matched

Table 2 shows the analysis conditions for the MMSE-based
speech analysis. AR order I was 7 for complex analysis and
was 14 for real-valued analysis. In the first stage of the IWF,
the 16kHz signal was analyzed with I at 14. In the second
stage of the IWF, the 8kHz signal was analyzed with I at
7. The basis expansion order L was 1 (i.e., time-invariant
analysis).

The experiments are carried out by using the CENSREC-2
baseline script[18][19]. Remainder of the conditions including
HMM configuration are the same as those in the script. The
following 39 order parameters estimated by HCopy in the
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HTK[20] was used as the HMM feature vector; MFCC(12th)
+∆ MFCC(12th) +∆∆ MFCC(12th) +log power(1st) +∆ log
power(1st) +∆∆ log power(1st). The experimental results are
shown in Figures 3 and 4. In Figures, CENSREC-2 Baseline
means HMM speech recognition without the front-end based
on IWF, AFE Baseline means the original ESTI AFE that
is based on the FFT-based IWF. AFE Baseline + RASTA
means that RASTA filtering[6] is carried out for the MFCC
estimated by the FFT-based IWF. It is the other conventional
method. Real 8k+Real 8k means the real-valued AR analysis
shown in Table 2 is carried out on first and second stages.
Complex 16k+Complex 8k means the complex-valued AR
analysis shown in Table 2 is carried out. Figures 3 and
4 demonstrate the performance (recognition rate and rela-
tive improvement) based on the ETSI AFE(FFT), the real-
valued MMSE, and the proposed wide-band complex-valued
MMSE analysis. The results demonstrate that the proposed
AR analysis methods outperform the original FFT-based AFE.
The proposed wide-band complex-valued MMSE analysis per-
forms best since complex analysis can estimate more accurate
spectrum than the conventional analysis, especially in low
frequencies, and the wide-band analysis can eliminate spectral
distortion in high frequencies. In addition, the AR analysis
methods outperform the original AFE since AR analysis can
estimate a more accurate speech spectrum without a fine
harmonics structure than FFT analysis. It is important to be
noted that the proposed method outperforms the other methods
in the case of condition 4 that is common environments for
ASR. All front-end methods do not work well in the case
of condition 2. It may indicate a limitation of MMSE-based
analysis method.

Table 2: Experimental conditions
Analysis window Window Length: 25.6[ms]

Shift Length: 10.0[ms]
Complex-valued AR
First stage (16kHz) I=14, L=1 (time-invariant)
Second stage (8kHz) I= 7, L=1 (time-invariant)
Pre-emphasis None
Real-valued AR I=14, L=1 (time-invariant)
Pre-emphasis None
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Figure 3: Recognition rates

!"#$%&%"#'(

!"#$%&%"#')

!"#$%&%"#'*

!"#$%&%"#'+

,-./01.

2)34335

2(64335

2(34335

264335

34335

64335

(34335

(64335

)34335

,78'90:.;%#.

,78'90:.;%#.<=,>?,

=.0;@AB<=.0;@AB

!"CD;.E@(FB<!"CD;.E@AB

!"
#$
%&'
"(
)*
+,
-'
"*
".
%

Figure 4: Relative improvements

VI. CONCLUSIONS

We have evaluated time-invariant real/complex-valued AR
analysis based on the ETSI AFE for ASR. While FFT is
used to estimate the spectra for the Wiener filter in the
standard AFE, in the proposed method, spectra are estimated
by MMSE-based complex-valued AR analysis. Performance
was evaluated using the CENSREC-2 in-car noise-corrupted
speech database and its baseline script. The complex-valued
and real-valued MMSE-based analysis methods were imple-
mented using MMSE-based TV-CAR speech analysis. To
suppress the influence of aliasing, complex analysis was
performed for a 16kHz signal, and the lower band spectrum
was extracted by the low pass filter of the . The experimental
results demonstrate that the wide-band complex-valued anal-
ysis outperforms the compared methods. In future, robust and
time-varying analyses will be investigated.
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