
 

 

Codebook-based Speech Enhancement with Bayesian 

LP Parameters Estimation  

Qing Wang and Chang-chun Bao  
Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control 

Engineering, Beijing University of Technology, Beijing, China, 100124 

E-mail: wangqing221@ emails.bjut.edu.cn and baochch@bjut.edu.cn  

 

 

 
Abstract—In this paper, we propose a codebook-based 

Bayesian linear predictive (LP) parameters estimation for speech 

enhancement, in which the LP parameters are estimated based 

on the current and past frames of noisy speech. First, by using 

hidden Markov model (HMM), we develop a new method to 

drive the speech presence probability (SPP) and speech absence 

probability (SAP). These two probabilities are the weighting 

coefficients for the estimated LP parameters corresponding to 

speech presence and speech absence states. Then we exploit the 

normalized cross-correction to adjust the transition probabilities 

between speech-presence and speech-absence states of HMM. 

The proposed adjustment method makes the SPP estimation 

more accurately. Finally, in order to suppress the noise between 

the harmonics of voiced speech, we employ the a posteriori SPP 

to modify the Wiener filter for enhancing the noisy speech. Our 

experiments demonstrate that the proposed method is superior 

to the reference methods. 

Index Terms—Speech enhancement, Wiener filter, Speech 

presence probability, Linear predictive parameters 

I. INTRODUCTION 

Speech enhancement in non-stationary noise is still a 

challenging topic due to its wide applications in hearing aids, 

mobile communications and speech recognition. Over the past 

four decades, many speech enhancement algorithms were 

proposed, such as the typical spectral-subtractive algorithm [1] 

and Wiener filtering [2]. A major drawback of these 

algorithms is that their performance will be degraded 

dramatically when the non-stationary noise is present. In 

order to overcome this problem, the codebook-based methods 

[3-6] relying on a priori knowledge about LP coefficients of 

speech and noise have been proven to work well. However, 

these methods still retain some artificial noise in the enhanced 

speech. The main reason is that they derived the LP 

parameters (LP coefficients and LP gains) on the assumption 

that speech is always present in noisy signal, but a given 

segment of noisy observation may consist of noise alone. Due 

to this unreasonable assumption, the LP parameters 

estimations of speech and noise are inaccurate. Recently, the 

researchers proposed a context-based Bayesian speech 

enhancement technique considering several speech codebooks 

[5]. Each speech codebook corresponds to its specific 

hypothesis. The final LP parameters are obtained by 

weighting the LP parameters based on each hypothesis. 

As an example of the codebook-based speech enhancement 

method, the work in [7] presented a Bayesian framework that 

considered two hypotheses, i.e., speech presence hypothesis 

and speech absence hypothesis. Here, the minimum mean-

squared error (MMSE) estimation of LP parameters is the 

weighted sum of the obtained LP parameters under the two 

hypotheses. The corresponding weighted coefficients are SPP 

and SAP respectively, and the probabilities vary frame by 

frame. However, this work [7] does not take full consideration 

of the inter-frame correlation of voice activity, which results 

in the inaccuracy estimations of SPP and SAP. In addition, 

there is another intrinsic problem in the codebook-based 

speech enhancement methods [3-7]. The priori codebooks 

only model the spectral envelopes of speech and noise rather 

than their fine structure, which results in the background noise 

remained in the voiced segments of the enhanced speech. 

In this paper, we propose a codebook-based Bayesian LP 

parameters estimation for the aforementioned two problems, 

which estimates the LP parameters based on the information 

of past noisy speech. First, the HMM theory [8] is employed 

to derive the SPP and SAP. By using information of past 

noisy speech, the accuracy of SPP is improved.  Then we use 

the normalized cross-correction coefficient (NCCC) between 

the spectra of noisy speech and noise [6] to adjust the 

transition probabilities between speech-presence and speech-

absence states of HMM. Finally, the a posteriori SPP in each 

time-frequency point [9] is combined with the Wiener filter to 

reduce the noise between the harmonics of the voiced speech. 

II. MODEL OVERVIEW 

In this section, we provide a brief overview of the 

memoryless MMSE estimation process in [7]. Considering an 

additive noise model where clean speech and noise signal are 

independent, the noisy signal y(n) under the following two 

hypotheses is given by  

H0: speech absent: ( ) ( )y n d n                        (1a) 

H1: speech present: ( ) ( ) ( )y n x n d n   (1b) 

where n is the time index, x(n) and d(n) represent the clean 

speech and noise, respectively. The estimated power spectrum 

of the noisy signal can be expressed as follows: 

 ˆ ˆ ˆ( ) ( ) ( )y x dP k P k P k   (2) 

where k is the index of frequency bins. 
22ˆ ( ) ( )x x xP k A k  

and 
22ˆ ( ) ( )d d dP k A k  are the power spectrum estimations of 
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speech and noise respectively. 2

x  and 2

d  are the LP gains of 

respective signals, and  

 
0

( ) ( )
p jkl

x xl
A k a l e


 , 

0
( ) ( )

q jkl

d dl
A k a l e


  (3) 

where ( (0),..., ( ))x x xa a p   and ( (0),..., ( ))d d da a q   denote the LP 

coefficients of speech and noise, respectively and p, q are the 

respective LP orders.  

We define  ,x dm m m  to represent the parameter set of 

speech and noise. 2,x x xm     
 is a parameter vector describing 

the speech power spectrum estimation, and 2,d d dm     
 

describes the noise power spectrum estimation. Under the 

hypothesis H0, the conditional expectation of m can be written 

as: 
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Given hypothesis H1, we have 
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where Nd and Nx are the codebook sizes of spectral shapes of 

noise and speech, respectively. Based on the expectation of m 

given H0 and H1, the MMSE estimation of m can be written as: 

 
1

0

ˆ [ | ] [ | , ] ( | )l l
l

m E m E m H p H


  y y y  (8) 

where ( | )lp H y  is the SPP or SAP. The estimated parameters 

m can be used to model the power spectra of speech and noise, 

respectively. A Wiener filter comprising the estimated power 

spectral envelops of speech and noise is applied to enhance 

the noisy speech in the frequency domain, that is,  

 ˆ ˆ ˆ( ) ( ) ( ) ( )x x dH k P k P k P k   (9) 

III. BAYESIAN ESTIMATION  

A. Bayesian Estimation of LP Parameters  

As explained in section II, the Bayesian framework in [7] 

only exploits the noisy speech of current frame, which results 

in the inaccuracy estimation of SPP and SAP.  In order to 

solve this problem, in this section we will develop the 

estimation methods about SPP and SAP by using the 

information of current and past frames of noisy speech based 

on Bayesian framework. Moreover, we exploit the HMM 

theory to derive SPP and SAP for each noisy frame. 

As defined in section II, we consider two hypotheses for 

the current noisy speech frame. H0 is speech absence 

hypothesis and H1 is speech presence hypothesis. For a given 

frame n, we define {  , 0,1}l lS S H l    to denote two states 

of HMM and qn denote the HMM state at frame n, i.e., 

0nq S  or 
1nq S . 

According to section II, m is the parameter set of speech 

and noise. The MMSE estimation of m using the information 

of current and past frames of noisy speech signal can be 

obtained as follows: 

 
1 2
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1 2 1 2
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First, according to the HMM theory [8], we can derive the 

term 
1 2( | , ..., )n l np q S y y y  as: 

 1 2
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Let 
1 2( ) ( , ..., , ), 0,1n n n ll p q S l   y y y  represent the forward 

probability. For the first frame, we have, 

 
1( )= ( ) ( | ), 0,1l n ll p S p S l y  (12) 

where p(S0) and p(S1) are the prior probabilities of speech 

presence and speech absence respectively, and they are 

assumed to be equal, i.e.,  
0 1( ) ( ) 0.5p S p S  . For the later 

frames, the forward probability in the current frame could be 

obtained from each of the forward probability in previous 

frame with a particular transition probability. i.e., 

 
1

1

0

( )= ( ) ( | ), 0,1n n il n l

i

l i a p S l  



 
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 
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where 
1( )il n l n ia p q S q S    is the transition probability, and 

we assume the transition probability ail to be known 

beforehand. Since it is well known that speech activities in the 

adjacent frames have a strong correlation, we set 

00 11 0.94a a   and 
01 10 0.06a a  . The term ( | )n lp Sy  can 

be obtained by (5) and (7). From (12) and (13), we have  

 1 2 1

0

( )
( | , ..., ) , 0,1

( )

n
n l n

ni

l
p q S l

i






  


y y y  (14) 

The transition probabilities we defined in the preceding 

way have an inherent problem. The ail taking higher values 

when i=l may produce time delay and a trailing of estimated 

SPP at the beginning and the ending segments of speech 

signal respectively. The trailing phenomenon avoids speech 

distortion, but the time delay in speech beginning segments 

would reduce the speech quality. In order to solve this 

problem, we employ the NCCC [6] to adjust the transition 

probabilities between speech-presence and speech-absence 

states of HMM. The NCCC is defined as: 

 2 2
( ( ) ( ) ) ( ) ( )

k k k

Y k D k Y k D k     (15) 

where |Y(k)|  and |D(k)| are the amplitude spectra of noisy 

speech and noise, respectively. 

From figure 1, we can see that   has a higher value in 

silence segments, and it decreases to a small value in the 

voiced segments. In the beginning frame of clean speech, 

which is indicated with red dashed line, the value of 
 

becomes lower than the value in silence segments. Therefore, 

the value of 
 
is applied to adjust the transition probabilities 

in speech beginning segments, i.e., 
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Fig. 1. The example of  . The blue solid line is the normalized clean 

speech waveform, the green solid line is the NCCC, and the red dashed line 

indicates the speech beginning frame. SNR=5 dB for white noise. 
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Fig. 2. The example of SPP. The blue solid line is the normalized clean 

speech waveform. The green solid line is the estimated SPP in [7]. The gray 

solid line is the proposed SPP estimation without adjusting the transition 

probabilities, and the red dashed line is the estimated SPP with adjusting the 
transition probabilities. SNR=5 dB for white noise. 

 

From figure 2, it can be seen that the estimated SPP of 

proposed method performs better than the method in [7]. The 

use of NCCC for adjusting the transition probabilities helps 

the estimate of SPP more accurately between speech-presence 

and speech-absence states. 

Second, we compute the term 
1 2[ | , ..., , ]n n nE m q Sy y y . 

Since the goal of using the past information is to compute 

SPP and SAP in current frame more accurately, this is 

obtained by the above work. For a given hypothesis, this term 

can be derived as in [4]. In terms of the signal non-stationary, 

the past information given in [4] just contains the current and 

previous frames noisy speech signal. Here, to retain the focus 

on the estimation accuracy of SPP and SAP, we assume 

 1 2[ | , ..., , ] [ | , ]n n l n lE m q S E m H y y y y  (17) 

The way to compute the term [ | , ]n lE m Hy  is given by the 

equations of (4), (5), (6) and (7). In order to obtain the 

estimation of m, the equations (14) and (17) are used in (10).  

B.     Modification of Wiener Filter  

As well known, the codebook-based methods [3-7] could 

not remove the background noise between the harmonics of 

the enhanced speech in the voiced segments. The main reason 

is that the priori codebooks cannot model the fine structure of 

speech and noise spectra. Therefore, we exploit the estimation 

of a posteriori SPP to modify the Wiener filter in equation (9). 

The modified Wiener filter can remove the noise between the 

harmonics in the voiced segments and the noise in silence 

segments. Here, the a posteriori SPP ( )k   in [9] is defined as: 
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1 ( )

k
k

k




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 (18) 

where ( )k  varies from each time-frequency point, and the 

generalized likelihood ( )k  is 
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Using the a posteriori SPP ( )k , we modify the Wiener 

filter as: 

 
ˆ ( )

ˆ( ) ( )
ˆ ˆ( ) ( )

x

x d

P k
H k k

P k P k



 (20) 

where ˆ ( )xP k  and ˆ ( )dP k  are the power spectrum estimations of 

speech and noise respectively, which  are obtained by using 

the parameters m in (10). 
min

ˆ( ) max{ ( ),  ( )}k k k   , and
min ( )k  

is a lower bound, which helps to achieve high quality of the 

enhanced speech by optimizing the trade-off between noise 

suppression and speech distortion in the voiced segments. 

Finally, in order to obtain the enhanced speech, the noisy 

amplitude spectrum is passed through the modified Wiener 

filter given in (20). 

IV. EXPERIMENTAL RESULTS 

In our experiments, one hour of speech utterances are 

employed to train a 7-bit LSF codebook of speech by LBG 

algorithm [10]. The test set including twenty speech 

utterances is selected from NTT database, and the sampling 

rate of speech signal is 8 kHz. The shape codebooks of noise 

are trained in a similar way. Four types of noise from NOISE 

92 database are used, which include babble, white, office and 

street. The codebook size of white, babble, street and office 

are 8, 16, 8 and 8, respectively. The input signal to noise ratio 

(SNR) is set to 0dB, 5dB and 10dB, respectively. In all cases, 

speech enhancement is conducted with the experimentally 

optimized parameter values, 
0 0.855  , 

1 0.25  , 
min 0.6  . 

For all experiments, the noise codebook is assumed to be 

known. We consider three references to compare with the 

proposed algorithms in this paper. Ref. A denotes the 

codebook-based ML method [3]. Ref. B indicates the 

codebook-based MMSE method in [4], and Ref. C is the 

codebook-based MMSE using speech presence uncertainty 

given in [7]. The average segmental signal-to-noise ratio 

(SSNR) [11], the average log-spectral distortion (LSD) [12] 

and the Perceptual Evaluation of Speech Quality (PESQ) [13] 

are exploited to evaluate the objective quality. In this paper, 

our evaluation only focuses on the improvement of enhanced 

amplitude. We therefore exploit the estimated amplitude and 

the noisy speech phase to reconstruct the enhanced signal. 

The table 1 shows average SSNR improvement of the four 

methods compared to the noisy speech. We find that the 

proposed method performs better than the three references. In 

table 2, we show the PESQ test results. Comparing with noisy 

speech, the PESQ values of these four algorithms all yield 

greater improvement. In comparison with the three references, 

The PESQ result of the proposed method still has a much 

higher value. The test result of LSD is given in table 3. 

Comparing with noisy speech and the three references, the 
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proposed method produces a lower LSD value. Thus, since 

the estimation of SPP is more accurate and the noise reduction 

between harmonics is more effective, the proposed method 

achieves a great improvement in terms of the objective quality. 
 

Table 1 Test Result of SSNR Improvement 

Noise Type Method 0dB 5dB 10dB 

 Ref. A 10.33 9.63 8.74 

white Ref. B  
Ref. C 

12.72 
19.47 

11.79 
17.78 

10.98 
15.70 

 Proposed 22.56 20.13 17.22 

 Ref. A 6.03 5.30 4.42 

babble Ref. B  
Ref. C 

10.25 
14.00 

8.98 
12.39 

7.82 
10.82 

 Proposed 15.47 12.77 11.92 

 Ref. A 13.02 11.64 10.17 

Street Ref. B  
Ref. C 

16.66 
20.15 

15.10 
17.99 

13.34 
15.44 

 Proposed 21.64 19.17 16.27 

 Ref. A 9.73 8.70 7.54 
Office Ref. B  

Ref. C 

13.36 

16.46 

12.09 

14.81 

10.64 

12.94 

 Proposed 17.33 15.60 13.57 
 

Table 2 Test Result of PESQ 

Noise Type Method 0dB 5dB 10dB 

 Noisy 1.38 1.61 1.97 

white Ref. A 1.87 2.25 2.53 

 Ref. B  
Ref. C 

2.24 
2.23 

2.49 
2.43 

2.69 
2.61 

 Proposed 2.34 2.59 2.78 

 Noisy 1.79 2.13 2.50 

babble Ref. A 1.81 2.17 2.50 
 Ref. B  

Ref. C 

1.95 

1.86 

2.35 

2.22 

2.66 

2.53 
 Proposed 1.98 2.38 2.71 

 Noisy 2.31 2.65 2.95 

Street Ref. A 2.58 2.85 3.07 

 Ref. B  
Ref. C 

2.79 
2.80 

3.04 
3.08 

3.30 
3.36 

 Proposed 2.90 3.17 3.43 

 Noisy 2.01 2.40 2.76 

Office Ref. A 2.16 2.52 2.81 
 Ref. B  

Ref. C 

2.39 

2.39 

2.73 

2.73 

3.02 

3.03 

 Proposed 2.46 2.80 3.09 
 

Table 3 Test Result of LSD 

Noise Type Method 0dB 5dB 10dB 

 Noisy 19.12 16.88 15.05 

white Ref. A 12.08 10.57 9.17 

 Ref. B  
Ref. C 

9.39 
6.55 

8.08 
5.73 

6.82 
5.28 

 Proposed 6.56 5.65 5.22 

 Noisy 14.63 12.61 10.72 

babble Ref. A 11.22 9.72 8.31 
 Ref. B  

Ref. C 

9.83 

8.57 

8.39 

7.09 

6.99 

5.71 

 Proposed 7.97 6.51 5.29 

 Noisy 12.61 10.73 8.99 

Street Ref. A 8.62 7.23 5.97 

 Ref. B  
Ref. C 

7.37 
5.77 

6.03 
4.66 

4.83 
3.87 

 Proposed 4.31 4.43 3.97 

 Noisy 13.09 11.16 9.38 

Office Ref. A 9.77 8.32 6.97 
 Ref. B  

Ref. C 

8.67 

7.47 

7.22 

6.05 

5.88 

4.82 

 Proposed 6.11 5.77 4.67 

V. CONCLUSIONS 

In this paper, Bayesian LP parameters estimation based on 

the information of current and past noisy speech is proposed 

for speech enhancement. The HMM theory is employed to 

drive SPP and SAP.  The use of past noisy information and 

normalized cross-correction makes contribution to improve 

the accuracy of SPP and SAP. Moreover, by employing the a 

posteriori SPP to modify the Wiener filter, we can remove the 

noise between the harmonics of voiced speech more 

effectively. Our experiments show that the proposed method 

is superior to the reference methods. 
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