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Abstract—In this paper, we propose a robust distant-talking
speech recognition system with asynchronous speech recording.
This is implemented by combining automatic asynchronous
speech (microphone or mobile terminal) selection and environ-
mental adaptation with deep neural network based framework.
Although applications using mobile terminals have attracted
increasing attention, there are few studies that focus on distant-
talking speech recognition with asynchronous mobile terminals.
For the system proposed in this paper, by using bottleneck
Features (BFs) from a Deep Neural Network (DNN) rather than
the conventional Mel-Frequency Cesptral Coefficients (MFCCs),
we adopted the state-of-the-art deep neural network acoustic
model, environmental adaptation and automatic asynchronous
speech selection. The proposed method was evaluated by using
a reverberant WSJCAM0 corpus, which was emitted by a
loudspeaker and recorded in a meeting room with multiple
speakers by far-field multiple mobile terminals. By using the
bottleneck features based DNN acoustic model with automatic
asynchronous speech selection and environmental adaptation, the
average Word Error Rate (WER) was reduced from 55.32% of
the baseline system to 19.38%, i.e. the relative error reduction
rate was 64.97%.
Index Terms: distant-talking speech recognition, tandem
DNN, hybrid DNN, model adaptation, asynchronous speech

I. INTRODUCTION

Many techniques have been proposed for robust auto-
matic speech recognition in noise and reverberation, us-
ing multiple microphones such as a microphone array
[1][2][3][4][5][6][7][8] [9]. These techniques require the syn-
chronous signals of multiple microphones and the cost and
preparation of the microphone array are considerable. The
synchronous microphone array device is not available in many
meeting rooms. In this paper, we present a robust hands-free
speech recognition system using a ubiquitous asynchronous
smart terminal such as a smart phone. A diagram of the
proposed system is shown in Fig. 1. The proposed system
consist of three components: (1) feature extraction and trans-
formation, (2) DNN-based back-end processing, (3) automatic
asynchronous speech selection and environmental adaptation.
In this report, we are focusing on (1) feature transformation
and (3) automatic asynchronous speech selection.

Many single-channel dereverberation methods have been
proposed for robust distant-talking speech recognition
[10][11][12][13]. Cepstral Mean Normalization (CMN)

[14][15] may be considered the most general approach. It
has been extensively examined and shown as a simple and
effective way of reducing reverberation by normalizing cep-
stral features. However, the dereverberation of CMN is not
completely effective in environments with late reverberation.
Several studies have focused on mitigating the above problem
[5][11][13][16][17]. A reverberation compensation method for
speaker recognition using spectral subtraction, in which late
reverberation is treated as additive noise, was proposed in [11].
A method based on Multi-Step Linear Prediction (MSLP) was
proposed by [13], for both single and multiple microphones.
The method first estimates late reverberations using long-
term multi-step linear prediction, and then suppresses these
with subsequent spectral subtraction. The drawback of this
approach is that the optimal parameters for spectral subtraction
are empirically estimated from a developing dataset, meaning
that the late reverberation cannot be subtracted correctly as it
is not precisely modeled. Previous work have shown that De-
noising AutoEncoders (DAEs) [18], [19] is robust against the
reverberation environment, because higher level representa-
tions and increased flexibility of the feature mapping function
can be learned [20]. DAEs were treated as a flexible feature
mapping method, which can generate robust features against
the reverberation. Similar to DAEs, here we employ another
feature mapping method, which generate bottleneck feature
[21], [22] from a DNN with a bottleneck layer. This bottleneck
layer creates a constriction in the network that force the
information pertinent to classification into a low dimensional
representation [23]. It has been shown that using a deeper
neural network joint with Hidden Markov Models (HMMs)
achieves state-of-the-art accuracy [24][25] and features derived
from DNNs are strongly discriminated and invariant, i.e., less
sensitive to perturbation in the input [26] . In this paper, by
utilizing the property of DNN, reverberation robust bottleneck
features are learned from a deep neural network.

DNN approaches have recently produced significant im-
provement in the accuracy of acoustic modelling for speech
recognition, across a range of domains and evaluation datasets
[24][25][27][28]. Compared to the Gaussian Mixture Model
(GMM), DNN do not rely on the assumption that HMM states
satisfy the gaussian distribution, and DNN typically employ a
deep architecture to learn invariant and discriminative internal
representations. In another words, DNNs may increase the
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Fig. 1. System diagram of speech recognition with asynchronous speech recording

accuracy for speech recognition. Inspired by the improvement,
instead of GMM, DNN was introduced into the proposed
system.

Due to asynchronous speech recording are used in this situ-
ation, automatic mobile terminal selection and unsupervised
environment adaptation are applied. For automatic mobile
terminal selection, the optimal mobile terminal of a speech
segment based on Voice Activity Detection (VAD) was auto-
matically selected according to the maximum likelihood or
power of the speech segment from each terminal. In this
paper, an ideal VAD is applied. For environmental adaptation,
we apply the Constrained Maximum Likelihood Linear Re-
gression (CMLLR) adaptation method [29][30], which is also
called feature space Maximum Likelihood Linear Regression
(fMLLR), to the features corresponding to the speech segment
selected automatically.

II. BOTTLENECK FEATURE

Bottleneck features are generated from a deep neural net-
work in which one of the internal layers has a small number
of hidden units, relative to the size of the other layers. This
small layer creates a constriction in the network that forces the
information pertinent to classification into a low dimensional
representation. Bottleneck features are most commonly used in
an autoencoder which the neural network is trained to predict
the input features themselves [31]. Because the activations at
the bottleneck layer are a low-dimensional nonlinear function
of the input features, an autoencoder can be viewed as a
method of nonlinear dimensionality reduction. Bottleneck fea-
tures for speech recognition are created from a DNN trained to
predict phonemes or phoneme states. The inputs to the hidden
units of the bottleneck layer are used as features for an HMM-
based speech recognizer. These bottleneck features represent a
nonlinear transformation and dimensionality reduction of the

input features.
In the proposed system, we trained a bottleneck DNN with

a bottleneck hidden layer of 42 hidden units rather than
the other hidden layers with 1024 units to predict phoneme
states. Including the bottleneck layers, there are totally 6
hidden layers in the deep architecture and the nolinear tanh
function was used as the activation at all hidden layers. This
bottleneck DNN was trained on the multi-condition training
dataset, which contained around 16.5 hours speech sound,
with around 8.5 million parameters using the well-known error
back-propagation procedure [32]. The stochastic mini-batch
gradient descent with a minibatch size of 512 samples was
used to optimize cross entropy cost function. Input features
used for bottleneck DNN is typically using variants of TRAPS
features, in which long temporal windows of critical band
energies are processed [33][34]. However, In most systems,
the best performance is obtained by combining the bottleneck
features derived from these inputs with traditional features, e.g.
MFCCs or PLP. It is believed that these bottleneck features
are complementary to the conventional features derived from
the short-time spectra of input. Due to the existence of
reverberation, we consider that the context frames contain
some relative information which could extract discriminative
and dereverberation robust bottleneck features. In our proposed
system, the adjacent 9 frames (i.e. ±4 ) of 12-dimensional
MFCCs plus power (i.e. 117-dimensional in total) were used
as input feature.

III. AUTOMATIC SPEECH SELECTION AND
ENVIRONMENT ADAPTATION

In distant-talking speech recognition, recognition accuracy
is significantly degraded by noise and reverberation. It depends
on the distance and direction of the microphone and the
speaker. In this situation where asynchronous mobile terminals
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are used, it is important to select an optimal speech segment
from an optimal mobile terminal. For the sake of simplicity,
the ideal VAD was used in this paper. Thus, the challenge
became how to automatically select an optimal mobile termi-
nal. We selected the speech from the mobile terminal with the
maximum likelihood criterion or maximum power criterion,
on the assumption that this terminal is nearest to the speaker
and is most appropriate for recognition. Speech selection were
applied only in the evaluation steps, as training data were
single channel speech rather than asynchronous speech. In
a previous work [20], the maximum power criterion is tend
to make an incorrect selection decision when the terminal is
closed to some noise source emitting huge power. However
the maximum likelihood criterion is less sensitive and robust
against the complex real environments.

Given the speech segment of n − th mobile terminal xn,
upon the maximum likelihood criterion, the optimal mobile
terminal is selected as:

n̂ = arg max
n

Ln, n = 1, . . . , N (1)

where Ln and N are the maximum likelihood of the speech
segment xn and the number of mobile terminals, respectively.
As a result, the speech segment xn̂ was selected as the optimal
speech.

For each speech segment xn, n ∈ {1, . . . , N}, it is split
into frames fi, i ∈ {1, . . . ,M} and labeled by a context-
dependent phoneme state li, li ∈ {1, 2, . . . , J}. All the
context-dependent phoneme states were generated by GMM-
HMM acoustic models, the emission distribution of context-
dependent phoneme state j ∈ {1, 2, . . . , J} is modeled by a
gaussian distribution with mean µj and covariance Σj . The
maximum likelihood Ln of the speech segment xn, which is
corresponding to the n− th mobile terminal, would be as

Ln =

M∏
i=1

p(fi, µj ,Σj) (2)

where p(fi, µj ,Σj) is the posterior probability that the frame
fi is emitted from a context-dependent phoneme state j ∈
{1, 2, . . . , J}.

fMLLR [29][30] is the method that modifies the featur
values relative to gaussian distribution for each HMM state by
using the regression matrix to reduce the mismatch between
the adaptation data and models. This method is intended to
obtain a transformation matrix for modifying the features, so
that maximize the likelihood of the adaptation data. In this
paper, we applied fMLLR for feature space adaptation, i.e.
environment adaptation.
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Fig. 2. Structure of the recording room (High: 250 cm, Reverberation time:
about 0.6 second)
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Fig. 3. Placement of the speakers and the mobile terminals (Height of the
table: 70 cm, Height of the speaker: 85 cm)

IV. EXPERIMENT

A. Experiment Setup

1) training dataset: The training dataset provided by RE-
VERB challenge (Reverberant Voice Enhancement anRecog-
nition Benchmark) [35] was used. This dataset consists of the
clean WSJCAM0 [36] training set and a multi-condition (MC)
training set. Reverberant speech is generated from the clean
WSJCAM0 training data by convolving the clean utterances
with measured room impulse responses and adding recorded
background noise. The reverberation times of the measured
impulse responses range from approximately 0.1 to 0.8 sec.
The number of speakers was 92 and the total number of
utterances was 7861. This training dataset was used for both
training of acoustic models and parameters of bottleneck DNN.

It should be noted that the recording rooms used for the
multi-condition training data and test data were different.

2) evaluation dataset: To evaluate the proposed method,
100 utterances randomly selected from the evaluation test set
of the WSJCAM0 corpus were emitted from a loudspeaker
and recorded by three asynchronous mobile terminals (iPhone
4S) set in a seminar room. Fig. 2 shows the structure of the
seminar (recording) room and Fig. 3 shows the positions of
the loudspeakers and the placement of the mobile terminals.
The speakers were fixed at eight positions from A to H shown
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TABLE I
WERS (%) OF DNN SYSTEM WITH ENVIROMENTAL ADAPTATION, USING

BFS

LDA STC Selection No Selection (average)ML MP
No 20.02 19.50 31.23
Yes 19.38 19.91 29.83

in Fig. 3. We recorded 100 utterances in total, at positions
A-H, using an iPhone 4S application called ”PCM recording”
for speech recording.

3) baseline systems: The well-known GMM and DNN were
used to model output probabilities of the context-dependent
HMM states in the baseline systems. This GMM were trained
on the multi-condition training dataset with around 2000 tied-
states and about 15000 gaussians. The 12-dimensional MFCCs
puls power and their ∆ and ∆∆ coefficients, i.e. 39 dimension
totally, were used as input features, which were also normal-
ized by CMN for per-speaker. In the evaluation step, a feature
space transform, which is obtained from the GMM-HMM
model, was applied for unsupervised environment adaptation
to alleviate the mismatch between training data and evaluation
data. As the limit of training dataset, which is just around 16.5
hours, a deep neural network consisting of 2 hidden layers and
1204 units in each layer was trained with a initial learning rate
of 0.015. Similar to bottleneck DNN, it was trained by using
the stochastic mini-batch gradient descent with a minibatch
size of 512 samples. At the decoding step, a standard 5k WSJ
bigram language model was used. Both normalization and
enviromental adaptation were used for both MFCC features
and bottleneck features. we used the DNN implementation as
reported in [37], which is part of the Kaldi toolkits [38].

B. Experiment Results

Table II shows the speech recognition results under multi-
condition training dataset. ”No Selection” shows the average
recognition results of multiple mobile terminals when rec-
ognizing singly recorded for each mobile terminal without
any selection. ”ML” showes the speech recognition results
of applying automatic mobile terminal selection with the
Maximum Likelihood criterion, while ”MP” employs the
Maximum Power criterion. The best result in the same kind
of system is bold. When bottleneck features were employed,
a remarkable improvement was achieves in both GMM and
DNN systems for all the evaluation datasets. The average
Word Error Rates (WERs) of multiple mobile terminals were
improved from 55.32% of MFCC features to 39.46% of
bottleneck features in the conventional GMM system. We
consider that one of most important reason that bottleneck
DNN learns some invariant and discriminative representations

with a complicated nonlinear transform, and this nonlinear
transform is robust to environmental variations. Moreover,
DNN system with bottleneck features gains more benefit,
reduces the speech recognition WERs from 39.46% of GMM
system to 34.50%. This reconfirm the conclusion from [39]
that using both tandem DNN (i.e. bottleneck feature) and
hybrid DNN achieves the best performance. As the envi-
ronmental adaptation (i.e. fMLLR ) was introduced into the
systems, the speech recognition performance was improved.
Because the environmental variation of speech is ubiquitous in
reality, fMLLR applied here generalized the variation between
training environment and adaptation environment.

By integrating the automatic mobile terminal selection, an
additional reduction of WERs was obtained. In all the sys-
tems but DNN system with bottleneck features, the proposed
maximum likelihood criterion automatic mobile terminal se-
lection obtained a little more gain than the previous maximum
power criterion. This confirms the idea that was introduced
in Section 3. However, the best performance of this situation
was showed in Table I. When an additional linear discriminant
analysis (LDA) [40] with semi-tied covariance (STC) matrix
[41] was applied, the maximum likelihood criterion achieves
the best performance of 19.38% comparing to 55.32% of the
baseline system, i.e. the reduction rate was 64.97% in the
proposed system.

V. CONCLUSION

In this paper, we proposed a robust distant-talking speech
recognition for asynchronous speech that was recorded using
multiple mobile terminals. In this system, the reverberation
and enviromental distortions robust bottleneck feature and
the state-of-the-art DNN acoustic model were integrated. For
alleviating the mismatch of the asynchronous speechs, we
introduce a maximum likelihood criterion comparing to maxi-
mum power criterion in previous work to avoid the degradation
of some high power noise. The best performance achieved in
the DNN system using bottleneck features with a LDA STC
linear transform for de-corerelation was 19.38% comparing to
55.32% of the baseline system.

In the further, we will integrate some dereverberation meth-
ods into the proposed system to supress the degradation of
dereverberation in a meeting room.
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TABLE II
WERS (%) OF KINDS OF SYSTEMS

Feature AM fMLLR Selection No Selection (average)ML MP

MFCC

GMM No 36.43 36.78 55.32
GMM Yes 30.82 32.40 48.98
DNN No 28.20 29.07 44.93
DNN Yes 23.58 25.10 37.42

BF

GMM No 25.39 25.69 39.46
GMM Yes 23.41 24.34 38.12
DNN No 21.42 21.54 34.50
DNN Yes 20.02 19.50 31.23
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