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Abstract— In this paper, we propose a two-stage lexicon 

optimization method based on a statistical acoustic confusability 

measure to generate an optimized lexicon for automatic speech 

recognition (ASR). It is usual to build a lexicon by using 

grapheme-to-phoneme (G2P) conversion. However, G2P is often 

realized by 1-to-N best mapping, which results in the increase of 

lexicon size. To mitigate this problem, the proposed method 

attempts to prune the confusable words in the lexicon by using a 

confusability measure (CM) defined as an acoustic model (AM) 

based distance between two pronunciation variants. In 

particular, the first stage of the proposed method coarsely 

prunes the lexicon by a CM defined from monophone-based 

hidden Markov models (HMMs), and the second stage prunes it 

further by a CM defined from triphone-based HMMs. It is 

demonstrated from ASR experiments that an ASR system 

employing the proposed lexicon optimization method achieves a 

relative word error rate reduction of 18.88% on a task of Wall 

Street Journal, compared to that using a G2P-converted 

pronunciation dictionary without any optimization.  

I. INTRODUCTION 

Recently, a number of automatic speech recognition (ASR) 

systems have been proposed to handle large vocabularies of 

words by means of acoustic modeling, language modeling, 

pronunciation modeling and hybrid modeling [1]. A 

pronunciation lexicon plays a main role in linking the acoustic 

model and language model [2]. The lexicon is typically 

handcrafted by experts, which is a time-consuming and 

tedious process. Thus, several methods have been developed 

to automatically generate the words in a lexicon. One of them 

is a weighted finite-state transducer (WFST)-based grapheme 

to phoneme (G2P) conversion technique [3]. This technique 

has a larger size of lexicon and can achieve better word 

accuracy than a hand-labeled lexicon. However, the 

confusability between words in such an expanded lexicon is 

increased because when the pronunciation variants of each 

word are generated, the pronunciation dictionary incurs more 

confusability due to an increase in overlapped pronunciation 

variants [2]. Thus, the proper pronunciation variants should be 

selected in lexicon modeling for the further improvement of 

ASR performance. 

There has been a multitude of approaches regarding lexicon 

modeling. For example, a G2P conversion method based on 

hidden conditional random fields (HCRFs) was proposed for a 

large vocabulary continuous speech recognition (LVCSR) 

system [4]. In addition, a data-driven method using 

pronunciation mixture model (PMM) and letter to sound 

model (L2S) was proposed for generating a weighted lexicon 

[5]. However, both methods did not consider the overlapped 

pronunciation variants in the expanded lexicon.  

In this paper, we focus on a lexicon optimization approach 

that uses a statistical acoustic CM and a lexicon expansion 

technique. While there was an approach to reduce lexicon size 

using a CM, this approach suffered from the excessive 

removal of words, causing an out-of-vocabulary problem [7]. 

To remedy such an excessive removal problem, we had 

proposed a lexicon optimization method using monophone-

based acoustic distance between two pronunciation variants 

[8]. That is, we applied the technique to an ASR system based 

on triphone HMMs but the lexicon was optimized using 

monophone HMMs. Therefore, there might be a room for 

further optimization suitable for triphone-based HMMs. Thus, 

the proposed method in this paper tries to extend our previous 

one for triphone-based ASR. It is usual to train hidden 

Markov models (HMMs) first using monophone followed by 

extending the monophone HMMs into triphone HMMs. 

Similarly, the proposed lexicon optimization method is 

realized by a two-stage approach that prunes the confusable 

pronunciation variants using a monophone-based CM for 

monophone HMMs, which is identical to the approach in [8], 

and a triphone-based CM for triphone HMMs.   

II. LEXICON EXPANSION USING A G2P MODEL  

G2P conversion is used to predict pronunciation variants by 

aligning the graphemes of sentences or words with phonemes 

[9]. The simplest G2P conversion is achieved by a dictionary 

look-up [9]. That is, for a given input grapheme sequence, a 

possible pronunciation variant is obtained using a look-up 

table. However, this look-up table approach can cause an out-

of-vocabulary since the look-up table size is in general finite.  

 In order to overcome the limitation of such finite 

dictionary, a data-driven approach can be used for the G2P 

conversion [9]. This is usually performed by mapping 1 to N-

best after designing a joint-sequence model from a training 

corpus. Fig. 1 illustrates the G2P conversion result for the 

word “APPLE.” As shown in the figure, this word can be 

represented by three different pronunciation variants. 
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III. PROPOSED TWO-STAGE LEXICON OPTIMIZATION USING 

CONFUSABILITY MEASURE 

The proposed method uses an acoustic model-based CM 

and a lexicon expansion approach to model the lexicon for an 

ASR system. Fig. 2 shows the procedure for the lexicon 

optimization method using Gaussian mixture acoustic models. 

First, the lexicon is generated for input words using a 1-to-N-

best G2P model. In order to reduce pronunciation variants, the 

first stage of the proposed method applies a CM to prune the 

confusable pronunciation variants in a view of monophone 

acoustic models. Next, the second stage of the proposed 

method optimizes the output lexicon of the first-stage lexicon 

optimization by using the CM applied to triphone-based 

acoustic models. Finally, the optimized lexicon is used for 

constructing an ASR system employing acoustic models. 

A. Confusability Measure Between Pronunciation Variants  

A CM can be defined by the linguistic distance between 

two pronunciation variants in the expanded lexicon of a G2P 

model [6]. In this subsection, we define a CM as the acoustic 

distance between two pronunciation variants using inter-

phone and inter-word distances.  

Let iW  be the i-th word in the original lexicon, and let 

),,1(, Njs ji  be the 1-to-N-best mapped phoneme 

sequences for .iW  Then, the CM of 
jis ,
 is defined as [10] 
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where N  is the number of phoneme sequences, WN  is the 

total number of words of the original lexicon, and ),( yxD is 

the dynamic programming (DP)-based pronunciation variants 

distance between x and y. In addition, 

,)(#)( max,, lssL jkjk  where )(# , jis  is the number of 

phonemes in jis ,  and maxl  is the maximum length among all 

the phoneme sequences in the G2P converted lexicon defined 

as )).((#max ,1,1max jiNjWNi sl   

B. Phoneme Distance Measure 

The acoustic distance between two phonemes can be 

calculated by using acoustic models [10], which is defined as 

 








Q

L

i
iqiqN

Q

HMM
QP

D
L

QP

ppd
)(

),(
1

)(

),(
1

21

21

NN

           (2) 

where Q  is the alignment between the HMM states of the 

phonemes 1p  and ,2p )(QP  is the probability of ,Q  L  is the 

length of the alignment, iq1  and iq2  are the states of the 

models that are aligned according to .Q  Also, 
iq1

N  and 
iq2

N  

are the Gaussian mixtures associated with the states iq1  and 

,2iq  respectively. In Eq. (2), )(QP is calculated by 

multiplying the transition probabilities of both phoneme state 

sequences.  

In order to calculate the distance between two Gaussian 

components, ),,( ND  we apply a weighted approximation 

method using the Kullback-Leibler (KL) divergence between 

two Gaussian mixtures [11], such as,  
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C. Pronunciation Variant Distance Measure 

By using the distance between two phonemes as described 

in the previous subsection, we compute the acoustic distance 

between two phoneme sequences, xs  and .ys  To this end, the 

DTW technique is also used as [10] 
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Fig. 1. Example of the G2P conversion result for a given word, “APPLE.” 
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Fig. 2. Procedure of the proposed two-stage lexicon optimization method. 
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where )),(),(( kpkpd yxHNMM the distance between the 

HMMs is defined in Eq. (2) and )(kw  is a weighting 

function used to normalize the path, .F   That is, )(kw  is 

defined as  

 

 )1()()1()()(  kjkjkikikw                (6) 

 

where ,0)1()1(  ji and )(kc  in the path ),2(),1({ ccF   

)}(, Kc  consists of the pair of coordinates ))(,)(( kjki  in 

the i  and j  directions when K is the number of alignments 

of the two pronunciation variants. 

D.  Two-stage Lexicon Optimization 

As described in Fig. 2, the first stage of the proposed 

method computes the acoustic distance of Eq. (5) when 

)(kpx  and )(kpy  in Eq. (5) are estimated from the 

monophone HMMs. After that, the G2P converted lexicon is 

pruned by applying Eq. (1). Next, the pronunciation variants 

are selected if the CM score defined in Eq. (1) is higher than a 

pre-defined threshold, except the pronunciation variants for 

each word in the original lexicon. Subsequently, the 

pronunciation variants with CM scores lower than the 

threshold are assumed to be confusable words, thus they 

should not be included in the pruned lexicon.  

In the second stage, the triphone-based acoustic distance is 

used to optimize the output lexicon from the first stage. Here, 

),,( HMMd  in Eq. (5) is defined when )(kpx  and )(kpy  are 

estimated from the triphone HMMs. In other words, the 

second stage repeats the optimization procedure for the first 

stage by estimating the probabilities from the triphone HMMs. 

Table I provides an example of the pronunciation variants 

obtained by the 1-to-4-best G2P conversion for the word 

“DENTIST” and their CM scores. In this case, the most 

probable pronunciation variant is /D EH N T IH S T/. In the 

first stage, three pronunciation variants, /D EH N T IH S T/, 

/D EH N T AH S T/, and /D EY N T IH S T/, are included in 

the pruned lexicon if the threshold of the first stage is set to 

0.05. After that, CMs of the pronunciation variants passed 

from the first stage are calculated using triphone-based 

HMMs in the second stage. If the threshold of second stage is 

set to 0.05, two pronunciation variants, /D EH N T IH S T/ 

and /D EH N T AH S T/, will remain in the lexicon.  

IV. PERFORMANCE EVALUATION 

A.  ASR System 

To evaluate the performance of the lexicon optimization 

method, we constructed a baseline ASR system (Baseline), an 

ASR system using a 1-to-4-best G2P-converted pronunciation 

dictionary, where a WFST-based G2P model with 4 

pronunciation variants per word was generated, and ASR 

systems based on lexicons pruned by the proposed lexicon 

optimization method using acoustic distance based on KL 

divergence. The baseline system was constructed using the 

Kaldi speech recognition toolkit [12] with 7,138 utterances 

from Wall Street Journal (WSJ0) [13]. In addition, a CMU 

dictionary was used for the baseline lexicon [14].  

As an ASR feature, 39-dimensional mel-frequency cepstral 

coefficients (MFCCs) were used, and the cepstral mean 

normalization (CMN) was applied to the feature vector. The 

acoustic model was constructed by means of concatenating 

context-dependent HMMs. A trigram language model (LM) 

was constructed from a set of sentences from the WSJ0 with a 

vocabulary of 20k different words.  

The evaluation test dataset (Eval set) was also extracted 

from the WSJ0 and was composed of 333 utterances 

containing 5,643 different words (Nov’ 92). In addition, in 

order to find the best thresholds for the proposed methods, 

403 utterances containing 6,722 different words in the 

si_dt_20 development test set of WSJ0 were used and referred 

to as Dev set. 

B. Comparison of ASR Performance 

We evaluated the performance of an ASR system using the 

lexicon pruned by the proposed CM and compared it with the 

baseline lexicon (CMU dictionary), 1-to-4 best G2P converted 

pronunciation dictionary, the optimized lexicon using a) the 

Levenshtein (LEV) distance, and b) two-stage optimized 

lexicon which used acoustic distance based on the KL 

divergence for monophone and triphone acoustic models. 

Next, in order to investigate the effect of the threshold for 

the two-stage lexicon optimization method, we evaluated the 

performance of the proposed method on Dev set by changing 

the threshold from 0.01 to 0.15 at a step of 0.01. As shown in 

Fig. 3, word error rates (WERs) were lowered by applying the 

first stage of the proposed method by increasing the threshold. 

Especially, it was found that the lowest WER was achieved 

when the threshold was set 0.06, but the WER was not 

changed even when the threshold was increased. In addition, 

the second stage of the proposed method provided the lowest 

WER when the threshold was set to 0.07, but the WER was 

not lowered any more even when the threshold was increased. 

Consequently, we set the thresholds for the first and second 

stage as 0.06 and 0.07 for the evaluation of the Eval set with 

the optimized lexicon. 

TABLE   I  
EXAMPLE OF CM SCORES BETWEEN ONE- AND TWO-STAGE LEXICON 

OPTIMIZATION METHODS FOR EACH PRONUNCIATION VARIANT OF THE 

WORD “DENTIST” OBTAINED BY 1-TO-4 BEST MAPPING 
 
 

4-best Pronunciation  
Variant 

One-stage 
 CM score 

Two-stage 
CM score 

D EH N T IH S T  0.1246 0.06618 

D EH N IH S T 0.0452 - 

D EH N T AH S T 0.1201 0.06618 

D EY N T IH S T 0.0866 0.04741 
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Table II shows WERs for the different methods described 

above on the task of Dev and Eval set. As shown in the table, 

the WERs were lowered with the proposed two-stage 

optimized lexicon. Consequently, we achieved relative WER 

reduction of 18.88% and 3.50% with the two-stage optimized 

lexicon, compared to that using 1-to-4-best G2P conversion 

and one-stage optimized lexicon, respectively. 

V. CONCLUSION 

In this paper, we proposed a two-stage lexicon 

optimization method based on a statistical acoustic CM in 

order to reduce the confusable pronunciation variants of 

lexicons constructed by the G2P model. In particular, the first 

stage and the second stage of the proposed method were 

applied to monophone-based HMMs and triphone-based ones, 

respectively. By doing this, the proposed method could 

achieve more optimized lexicon than a conventional method 

applied to only monophone-based HMMs. It was 

demonstrated from ASR experiments that an ASR system 

employing a lexicon optimized by the proposed method 

provided a relative WER reduction of 18.88% and 3.50%, 

compared to those by a 1-to-4-best G2P conversion and the 

conventional method applied to monophone-based HMMs, 

respectively. 
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TABLE   II 

PERFORMANCE COMPARISON OF ASR SYSTEMS USING LEXICONS 

OPTIMIZED BY DIFFERENT METHODS 
 
 

Lexicon 
WER (%) 

Dev set Eval set 

- Baseline (CMU dictionary) 11.93 12.53 

- 4-best pronunciation dictionary 15.01 13.93 

Optimized lexicon using different inter-pronunciation variant distance 

a) Optimized lexicon  LEV-based distance 14.43 12.23 

b) Optimized lexicon using KL divergence 

- Monophone  single Gaussian 12.90 12.42 

- One-stage monophone Gaussian Mixtures 11.66 11.70 

- Two-stage triphone Gaussian Mixtures 11.41 11.29 
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Fig. 3. Comparison of average word error rates of an ASR system 

employing lexicons optimized by acoustic distance using KL divergence 

according to the threshold in the first stage and the second stage.  
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