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Abstract—Word posterior probability has been widely used
as the confidence estimation of automatic speech recognition
(ASR) systems and has been proved to be quite effective in
related applications such as keyword search. However, word
posterior probability tends to overestimate the true probability
of a hypothesis, as it is computed on a subset of the total
hypothesis space. In this paper, we show that a more accurate
estimation of posterior can be obtained by using a calibration
method based on the conditional random field (CRF) model. By
using calibrated posterior estimation for keyword search task,
we obtain a maximum absolute gain of 1.15% for single-word
keyword search on the maximum term-weighted value (MTWV)
metric on the OpenKWS14 Tamil dataset.

I. INTRODUCTION

A typical spoken term detection (STD) system is based
on the transcriptions generated by the ASR system. Most
ASR systems provide a confidence estimate for every word
hypothesis. Word posterior probability is usually used as the
confidence estimation, which is proved to be quite effective.
However, word posterior probability is often overestimated due
to the pruning of the recognizer when decoding. In the decod-
ing process, hypotheses which get a relatively low likelihood
are removed from the final transcriptions. When computing
the posterior probability of a word hypothesis, we usually
treat the remaining hypothesis space as the total hypothesis
space and that leads to the overestimated probability. The
goal of this work is to calibrate the word posterior estimation
in confusion networks to improve the performance of STD
systems. By using a CRF model to estimate the probability of
whether a confusion network bin contains a correct hypothesis
and normalizing the posterior probabilities of all the word
hypotheses in the confusion network bin accordingly, the entire
posterior estimation is calibrated.

In this paper, Section II mainly introduces the confusion
networks used in our work. Prior work is discussed in Section
III. In Section IV, we describe the keyword search task and
the metrics. In Section V, we propose our posterior estimation
calibration approach. In Section VI, the results are presented.
Section VII is the summarization of our work.

This work is supported by National Natural Science Foundation of China
under Grant No. 61273268, No. 61370034 and No. 61403224.

II. CONFUSION NETWORKS

Confusion networks [1, 2] are compact representations of
lattices output by ASR systems. They are designed to minimize
word error rates instead of sentence error rates and keep
the property that all word hypotheses are totally ordered.
Confusion networks are created by clustering edges which
overlap in time in lattices, after which competing hypotheses
are clustered into the same confusion network bin.

In lattices, each word hypothesis has a posterior probability
which is the sum over the probabilities of all the paths which
contain that word hypothesis. The formula is as below [3]:

p(W |X) =

∑
q p(q,W )

p(X)
(1)

where p(W |X) is the probability of a word hypothesis given
the observed signal X . The probability of the path q which
contains the hypothesis W is denoted as p(q,W ). p(X) is the
prior probability of X and it is usually approximated by the
sum over the probabilities of all the paths through the lattice.
The approximation leads to the overestimation of posterior
probabilities, because it treats the pruned hypothesis space as
the total hypothesis space.

Confusion networks cluster competing hypotheses from
different paths in lattices into one confusion network bin.
In the clustering process, hypotheses which share the same
word identification in a confusion network bin are merged into
one. Their probabilities are added, while the other hypotheses
remain unchanged. Therefore, probabilities in confusion net-
works are almost the original posterior probabilities in lattices
and are overestimated. That means every confusion network
bin is believed to contain a correct hypothesis. However, this
is not always true for a considerable proportion of confusion
network bins. And Fig. 1 shows an example of that: the fifth
bin of the confusion network has no correct word hypothesis
“DONE”, but the probabilities of all the wrong hypotheses
sum to 1, which is not expected.

In fact, the error (i.e., no correct hypothesis) rate of con-
fusion network bins in our STD system built for Tamil is
about 54%. Therefore, calibration of word posterior estimation
is essential in confusion networks to obtain a more accurate
confidence estimation.
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start

water 0.2

what 0.8

whatever 0.16

ever 0.7

have 0.14

your 0.05

your 0.1

you 0.68

null 0.11

view 0.05

no 0.01

null 0.7

hang 0.3

end

Fig. 1. Confusion network of the sentence “what have you done”

III. PRIOR WORK

There has been similar work for calibrating word posterior
estimation in confusion networks. Hillard et al. [4] trained
two Support Vector Machine classifiers to compensate for
posterior estimation in confusion networks, and improved the
1-best confidence estimate significantly. However, whether a
confusion network bin contains a correct hypothesis is heavily
affected by its surrounding bins. And a wrong bin in which
there is no correct hypothesis will probably lead to an error
of the following bin considering the decoding process. So the
problem of calibrating the posterior estimation in confusion
networks is more similar to the one of sequence labeling
instead of a classification problem as is described in [4].
Tur et al. [5] employed the CRF model for semantic parsing
based on confusion networks for the task of spoken language
understanding (SLU), in which the mission is to label every
confusion network bin with a semantic related label. And this
method outperforms other classification methods for semantic
parsing. Similarly, our work uses the CRF model to label
confusion network bins with “True” or “False”. Accordingly,
posterior probabilities of word hypotheses in a confusion
network bin are normalized and a better confidence estimation
is obtained for keyword search task. The calibrated confusion
networks lower the posterior probabilities of word hypotheses
in wrong bins, which will directly lower the probabilities of
false alarms in keyword search results and will surely improve
the performance of STD systems.

IV. DATA AND METRICS

The data for our experiments is conversational speech pro-
vided by the Intelligence Advanced Research Projects Activity
(IARPA) Babel project from a low-resource language: Tamil.
All data for this project is disseminated by the National
Institute of Standards and Technology (NIST) on behalf of
the IARPA. And the data is divided into training, development
(dev), and evaluation (eval) partitions. The training partition
with 60 hours of transcribed conversational speech and 20
hours untranscribed speech is used to train the ASR system.
The dev partition consists of 10 hours of transcribed speech,
which is used to train the CRF model. The evaluation data
used in our work is a subset of the eval partition, which is
released by NIST for local tests and is designated Eval Part
One (evalPart1). The evalPart1 partition consists of 15 hours
of transcribed speech and is used to test if our approach works.

The speech recognizer used in our experiments is the
HDecode in the HTK [6] and a convolutional maxout neural
networks (CMNN) [7] acoustic model is trained for building a
start-of-the-art ASR system. The result of keyword search task

is a list of all hits found for every keyword in the keyword
list. Every hit in the list is labeled with the audio file in which
the keyword is found, the start and end time of the hit in the
audio and a confidence score for the hit. The keyword search
result is evaluated using term-weighted value (TWV) [8]:

TWV (θ) = 1− [Pmiss(θ) + βPFA(θ)] (2)

The parameter θ is a confidence measure of a hit in the hit
list. TWV is a function of θ, and actual term-weighted value
(ATWV) is the TWV value at a specific θ. MTWV is the
maximum of TWV over all possible values of θ.

V. CALIBRATING POSTERIOR ESTIMATION

A. CRF

Linear-chained CRF [9] is a discriminative model frame-
work which is widely used for segmenting and labeling
sequence data.

Calibrating posterior estimation in confusion networks is in
fact a problem of labeling the sequence bins with “True” or
“False”. Given a confusion network of N bins, the problem is
like this:

Ŷ = argmax
Y

P (Y |X) (3)

where X = x1, x2..., xN is the input confusion network bin
sequence, and Y = y1, y2, ..., yN is the output label sequence.
P (Y |X) is defined as:

P (Y |X) =
1

Z(X)
exp(

∑
k

λkfk(yt−1, yt, xt)) (4)

where fk(yt−1, yt, xt) represents a feature function, and λk is
its associated weight learned on training dataset. Z(X) is the
normalization term [9]. After the linear-chain CRF model has
been trained, the output label sequence Ŷ is generated using
the Viterbi algorithm.

In our work, we use four labels for labeling confusion
network bins: BEGIN stands for the start of an utterance, END
stands for the end; TRUE indicates there is a correct hypothesis
in current bin, while FALSE indicates there is none.

B. Feature extraction and feature selection

We use a series of features extracted from the confusion
networks, including score features of original posterior prob-
abilities, structure features of confusion network bins and
position specific features extracted from the whole utterance.
Details are listed below:

1. Non-null probabilities: the sum probabilities over all the
word hypotheses except null hypotheses in current confusion
network bin.

2. Top hypotheses features: this set of features are related
to the word hypothesis Wtop with the highest posterior prob-
ability in the confusion network bin. The probability of Wtop

and its associated R0 and R1 [10] are calculated. R0 and R1

are defined as below:

R0(K) =

∑
i cf (d

K
i )

T
(5)
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R1(K) =

∑
i(1− cf (dKi ))

T
(6)

where cf (dKi ) is the probability of the i-detection of word K
in the utterance and T is the duration of the utterance. Also,
top probabilities in the adjacent bins which come before and
after current bin are included.

3. Entropy features: the entropies of current bin and its
adjacent bins.

4. Statistics features: the means, variances of probabilities
of current bin and its adjacent bins.

5. Null hypothesis features: Boolean features indicating
whether the current bin and its adjacent bins have the null
hypothesis as the most probable hypothesis [4].

6. Position specific features: the length-normalized position
of current bin, the log length and duration of the utterance [4].

7. Syntactic features: the unigram probability of the top
word hypothesis from the recognizer language model in cur-
rent bin, the bigram probability which sums over all the
bigram probabilities of word hypotheses in current bin with
its adjacent bins, the maximum bigram probability of word
hypotheses in current bin with its adjacent bins.

In fact, two sets of confusion networks have been used
for feature extraction in our approach, of which one removes
the language model likelihoods compared to the other one.
This is because that the language model sometimes leads to
worse estimation of a hypothesis, especially on low-resource
conditions like on the Tamil dataset. The set of confusion
networks without language model likelihoods is denoted by
CNs-AM, the other set is denoted by CNs. Features mentioned
above are extracted in both CNs-AM and CNs.

For comparison, we also train an SVM model just like what
has been done in [4]. As for the CRF model, there is no need
to select features because the CRF model is capable of dealing
with highly correlated and complex features. However, as for
the SVM model, feature selection is necessary.

In this work ,we use the quadratic programming feature se-
lection (QPFS) [11] for feature selection. The QPFS optimizes
the relevance of the selected features to the class labels and
minimizes redundancy among the selected feature set. Using
the QPFS, we find out that the 10 best-ranked features are:
the unigram probability of the top word hypothesis in current
bin from CNs, the mean of probabilities in current bin from
CNs-AM, the mean of probabilities in current bin from CNs,
the Boolean feature of null hypothesis in current bin from
CNs-AM, the non-null probability of current bin from CNs-
AM, the top hypothesis probability in the following bin from
CNs, the Boolean feature of null hypothesis in the following
bin from CNs-AM, the variance of probabilities in current bin
from CNs-AM, the top hypothesis probability in current bin
from CNs and the non-null probability of current bin from
CNs.

C. Experiments

We use the confusion networks of the dev partition to train
our CRF model and the SVM model. And the training data

consists of 10566 utterances segmented by our ASR system.
Features described above are extracted from those utterances.

After models have been trained, we apply them to calibrate
the confusion networks of the eavl partition according to
the probabilities of the label TRUE. That is, in the original
confusion networks, every bin has a probability of 1 for being
labeled as TRUE; while in calibrated confusion networks, the
probability is generated from either the CRF model or the
SVM model. The best SVM model is trained with a Gaussian
kernel, which is the same with the approach described in [4].

To evaluate the performance of our approach, the MTWV
metric is calculated on 3 different keyword lists. The first
keyword list is the one for OpenKWS14 evaluation. There are
5576 keywords in this list, of which 1272 are single-word and
4304 are multi-word. We denote this keyword list by LIST1.
The second keyword list is one consists of 1931 single-word
keywords and is denoted by LIST2. LIST2 is mainly used
for development because of its simplicity. The third keyword
list consists of 5213 single-word keywords and is denoted by
LIST3. LIST3 is used for verifying the effctiveness of our
method on single-word keyword search.

VI. RESULTS

As is described in section 5.3, a CRF model and an SVM
model are trained on the dev partition. And the classification
performance of the two models is evaluated, which has been
shown in Table I. Obviously, the CRF model outperforms the
SVM model on classification performance, just as expected.
Although the F1 is not very high, we can still use it for
calibrating scores in confusion networks. Then the confusion
networks are calibrated and keyword search task is conducted.
The results of MTWV on the dev partition itself using LIST2
are in Table II. We can see that the calibration shows signifi-
cant improvement over the baseline for the two models and the
CRF model achieves more gain than the SVM model, which
shows correlation with the better classification performance.
For further exploration, calibrated confusion networks are used
for keyword search using three different keyword lists on the
evalPart1 partition. The results are in Table III.

As we can see in Table III, the CRF model still outper-
forms the SVM model on different keyword lists. Consistent
improvement has been observed over the baseline using the

TABLE I
CLASSIFICATION PERFORMANCE OF BOTH MODELS

dev/eval Model recall precision F1

dev SVM 64.6% 68.54% 66.5%
CRF 65.0% 70.29% 67.54%

evalPart1 SVM 60.0% 39.51% 47.65%
CRF 63.5% 39.71% 48.86%

TABLE II
MTWV RESULTS ON THE DEV PARTITION USING LIST2

Model Baseline Calibrate Absolute Gain
SVM 21.58% 21.95% 0.37%
CRF 22.22% 0.64%
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CRF model, while the results of the SVM model on LIST1
and LIST2 do not show improvement. However, the results
on LIST3 of both models show significant improvement over
the baseline. The results indicate that the gain may be mainly
obtained from single-word keywords, and further analysis of
the results of both models using LIST1 is shown in Table IV.

Results in Table IV show that the improvement is indeed
obtained from single-word keywords. Calibration of the SVM
model harms the performance of multi-word keywords a lot,
while the CRF model does little.

From the results, we can see that calibrating confusion
networks achieves much better MTWV than the baseline when
dealing with single-word keyword search. And our approach
outperforms the method using the SVM model. It improves the
performance of single-word keyword search without harming
that of multi-word keyword search. The reason why our ap-
proach does not help improve the performance of multi-word
keyword search is that our approach aims to calibrate single
confusion network bins, which are associated with single-word
keywords directly. We do not pay that much attention to the
correctness of confusion network bin sequences, which are
associated with multi-word keywords. The calibration of single
bins is averaged when processing multi-word keyword search.
So the calibration does not contribute to the gain of multi-word
keyword search.

VII. CONCLUSIONS

We propose a calibration method for confusion networks
to obtain a more accurate posterior estimation for keyword
search task. The method employs the CRF model for calibrat-
ing confusion networks and achieves consistent improvement
for single-word keyword search. However, the classification
performance of this method still needs further improvement to
obtain better results. Also, how to calibrate the probabilities of
confusion network bin sequences, which are associated with
multi-word keyword search, is to be explored.

TABLE III
MTWV RESULTS ON THE EVALPART1 PARTITION

Keyword List Model Baseline Calibrate Absolute Gain

LIST1 SVM 35.20% 34.96% -0.24%
CRF 35.40% 0.20%

LIST2 SVM 24.56% 24.59% 0.03%
CRF 25.40% 0.84%

LIST3 SVM 19.32% 20.01% 0.69%
CRF 20.47% 1.15%

TABLE IV
MTWV RESULTS OF SINGLE-WORD KEYWORDS AND MULTI-WORD

KEYWORDS SEPARATELY ON EVALPART1 USING LIST1

Single/Multi Model Baseline Calibrate Absolute Gain

Single(1272) SVM 28.32% 28.41% 0.09%
CRF 29.15% 0.83%

Multi(4304) SVM 37.50% 37.18% -0.32%
CRF 37.49% -0.01%
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