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Abstract—Many existing speaker verification systems are re-
ported to be vulnerable against different spoofing attacks, for
example speech synthesis, voice conversion, play back, etc. In
order to detect these spoofed speech signals as a countermeasure,
we propose a score level fusion approach with several different i-
vector subsystems. We show that the acoustic level Mel-frequency
cepstral coefficients (MFCC) features, the phase level modified
group delay cepstral coefficients (MGDCC) and the phonetic
level phoneme posterior probability (PPP) tandem features are
effective for the countermeasure. Furthermore, feature level
fusion of these features before i-vector modeling also enhance
the performance. A polynomial kernel support vector machine
is adopted as the supervised classifier. In order to enhance
the generalizability of the countermeasure, we also adopted
the cosine similarity and PLDA scoring as one-class classifica-
tions methods. By combining the proposed i-vector subsystems
with the OpenSMILE baseline which covers the acoustic and
prosodic information further improves the final performance.
The proposed fusion system achieves 0.29% and 3.26% EER
on the development and test set of the database provided by
the INTERSPEECH 2015 automatic speaker verification spoofing
and countermeasures challenge.
Index Terms: speaker verification, spoofing and countermea-
sures, i-vector, modified group delay cepstral coefficients,
phoneme posterior probability

I. INTRODUCTION

The goal of speaker verification is to automatically verify
the claimed speaker identity given a segment of speech. In the
past decade, speaker verification has attracted significant re-
search attention with promising results [1]. However, recently
it is reported that many existing speaker verification systems
are vulnerable against different spoofing attacks, e.g. speech
synthesis, voice conversion, play back, etc.[2], [3], [4]

Compared to text independent speaker verification, text
dependent speaker verification is more robust against the
play back spoofing since the speech content is constrained
or pre-defined. Speaker-adapted speech synthesis and voice
conversion are the most common spoofing methods that can
convert arbitrary text or speech inputs towards the target
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speaker [2]. To enhance the robustness of speech verification
system against spoofing attacks, different countermeasures
have been proposed. In [5], higher-level dynamic features and
voice quality assessment are used to detect those artificial
signals. Furthermore, modified group delay cepstral coeffi-
cients (MGDCC) feature has been proposed to distinguish
between the original and the spoofed speech signals in the
phase domain [6]. This approach is based on the fact that the
phase information of synthetic spoofing speech is typically
different from the real human articulated speech while the
human auditory system is less sensitive to this difference.
Apart from acoustic features, prosodic features [7], [8] are
also used widely in speech systems. Long term temporal
modulation feature derived from magnitude or phase spectrum
has also been proposed to detect the synthetic speech [9].

Total variability i-vector modeling has been widely used in
speaker verification due to its excellent performance, compact
representation and small model size [10], [11]. In this work,
we apply the recently proposed generalized i-vector framework
[12], [13], [14] with both the acoustic and phonetic features
to the countermeasure task.

Figure 1 shows an overview of our anti-spoofing coun-
termeasure system. First, there are several i-vector subsys-
tems using different features, namely the acoustic level Mel-
frequency cepstral coefficients (MFCC) features, the phase
level MGDCC features, the phonetic level phoneme posterior
probability (PPP) tandem features [13], [15] and their fea-
ture level combinations. Second, we also applied the openS-
MILE toolkit [16] to perform the utterance level acoustic
and prosodic feature extraction. We believe that the spoofed
speech signal may have different prosodic patterns. Third, after
the feature normalization, multiple classification methods, e.g.
cosine scoring, K-nearest neighbor (KNN), simplified PLDA
[17] and Support Vector Machine (SVM), are employed as the
back end. Finally, score level fusion is performed to further
enhance the overall system performance.

The remainder of the paper is organized as follows. The
corpus and the proposed algorithms are explained in Sections
II and III, respectively. Experimental results and discussions
are presented in Section IV while conclusions are provided in
Section V.
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Fig. 1. The system overview

II. CORPUS

The database used to evaluate the proposed methods is
based upon a standard dataset of both genuine and spoofed
speech. Genuine speech is without significant channel or
background noise effect and includes 106 speakers (45 male,
61 female), while spoofed speech is obtained through applying
several spoofing algorithms on the genuine speech [18]. The
training data set (25 speakers, 3750 genuine utterances and
12635 spoofed utterances) is for model training while the
development data set (35 speakers, 3497 genuine utterances
and 49875 spoofed utterances) is used to evaluate the system
performance and tune the parameters. Finally, the testing data
set (46 speakers, 193404 utterances) with unknown types of
spoofing attacks is provided to obtain the official submission
scores. The details of the database and evaluation protocol are
provided in [18].

III. METHODS

From Figure 1, we can see that there are four differ-
ent features, namely MFCC i-vectors, MFCC-PPP i-vectors,
MGDCC-PPP i-vectors and openSMILE feature vectors fol-
lowed by the same feature normalization, classification and
score level fusion pipeline. We first present the proposed
features in section III-A. Then section III-B describes the
supervised classification and score level fusion methods, re-
spectively.

A. Features

1) The i-vector framework: In the total variability space,
there is no distinction between the speaker effects and the
channel effects. Rather than separately using the eigenvoice
matrix V and the eigenchannel matrix U [19], the total vari-
ability space simultaneously captures the speaker and channel
variabilities [11]. Given a C component GMM UBM model λ
with λc = {pc, µc,Σc}, c = 1, · · · , C and an utterance with
a L frame feature sequence {y1, · · · ,yL}, the zero-order and
centered first-order Baum-Welch statistics on the UBM are
calculated as follows:

Nc =
L∑
t=1

P (c|yt, λ) (1)

Fc =
L∑
t=1

P (c|yt, λ)(yt − µc) (2)

where c = 1, · · · , C is the GMM component index and
P (c|yt, λ) is the occupancy posterior probability for yt on λc.
The corresponding centered mean supervector F̃ is generated
by concatenating all the F̃c together:

F̃c =

∑L
t=1 P (c|yt, λ)(yt − µc)∑L

t=1 P (c|yt, λ)
. (3)

Then the centered mean supervector F̃ is projected as follows:

F̃→ Tx, (4)

where T is a rectangular low rank total variability matrix and
x is the so-called i-vector [11].

In the proposed system, 8000 utterances are used to estimate
the total variability matrix for a 400 dimensional subspace.

2) The MFCC i-vector: The MFCC i-vector is extracted
by the aforementioned i-vector framework with the acoustic
level MFCC features. For cepstral feature extraction, a 25ms
Hamming window with 10ms shifts was adopted. Each utter-
ance was converted into a sequence of 36-dimensional feature
vectors, each consisting of 18 MFCC coefficients and their
first order derivatives. We employed the English phoneme
recognizer [20] to perform the voice activity detection (VAD)
by simply dropping all frames that are decoded as silence or
speaker noises.

3) The MFCC-PPP i-vector: It is reported in [13], [14] that
by combining the phonetic level phoneme posterior probability
based tandem features with the acoustic level MFCC features
at the feature level, the performances on speaker verification
and language identification are significantly enhanced. In this
work, the MFCC-PPP i-vector is extracted the same way
as in [13] following the generalized i-vector framework. We
employed the multilayer perceptron (MLP) based phoneme
recognizer [20] with a provided English acoustic model trained
on the TIMIT database to perform the phoneme decoding. The
GMM model size and the tandem feature dimensionality are
512 and 32, respectively.

4) The MGDCC-PPP i-vector: The MGDCC-PPP i-vector
is calculated the same way as the MFCC-PPP i-vector except
that here we replace the acoustic level MFCC features with
the phase domain MGDCC features. The MGDCC feature is
a kind of frame-level feature focusing on the speech phase
characteristics. It has been shown that phase domain features
are effective for anti-spoofing countermeasures [9]. In order to
calculate the MGDCC feature, we need to obtain the modified
group delay function phase spectrum (MGDFPS) [21] first.

Given the data xn of a short time window, the MGDFPS
spectrum τρ,γ(ω) is calculated as follows [21]:

τρ(ω) =
XR(ω)YR(ω) + YI(ω)XI(ω)

|S(ω)2ρ|
(5)

τρ,γ(ω) =
τρ(ω)

|τρ(ω)|
|τρ(ω)|γ (6)

where X(ω) and Y(ω) are the fourier transforms of speech
signal x(n) and nx(n); XR(ω) and XI(ω) are the real and
imaginary parts of X(ω); YR(ω) and YI(ω) are the real and
imaginary parts of Y (ω), respectively. |S(ω)|2 is calculated
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by applying a smoothing over X(ω) [21]. After applying the
Mel-frequency filter banks and Discrete Cosine Transform,
MGDCC feature is obtained. More details can be found in
[9].

5) The OpenSMILE feature vector: The OpenSMILE fea-
ture is a 6373 dimensional utterance level feature vector
extracted by the OpenSMILE toolkit [16] using the configura-
tion file provided by the 2014 Paralinguistic Challenge [22].
Since various kinds of features, such as MFCC, loudness,
auditory spectrum, voicing probability, F0, F0 envelop, jitter,
and shimmer, etc., are included, this feature set can capture
spoofing information at both the acoustic and prosodic levels.
In our system, it served as a baseline as well as a supplement
to those i-vector subsystems.

B. Back-end modeling

After feature vectors are extracted, we apply different clas-
sification methods for the back-end modeling.

1) The K-nearest neighbor classification (KNN): KNN is
a non-parametric multi-class classifier. The utterances in the
training set are divided into human set and spoofed set. For
each test utterance xt, K nearest neighboring utterances are
found in the training set and the score is calculated based on
the class distribution of these K nearest neighbors.

2) The cosine similarity scoring: In our system, a mean
vector of all the human utterances in the training data set is
calculated. For each test utterance, the score is computed as
the cosine similarity between itself and the human class mean
vector.

3) PLDA modeling: We first applied the simplified PLDA
modeling [17] as the back-end assuming that there are six spe-
cial speakers (five spoofing channels plus one human channel),
each represents a spoofing type or the original genuine speech.
Furthermore, we also adopted the two subspace (speaker
subspace and spoofing subspace) PLDA presented in [23] to
model the i-vectors. The standard log likelihood ratio based
hypothesis is emploied for the scoring [17], [23].

4) Support Vector Machine: We formed the anti-spoofing
countermeasure as a two class classification task for SVM
modeling. The linear kernel LIBLINEAR [24] and its poly-
nomial kernel extension LIBPOLY [25] are adopted as the
back-end SVM classifiers and we applied the min/max nor-
malization (range -1 to +1) for each feature dimension on the
training, development and test sets with parameters computed
only from the training data.

5) Score fusion: We simply employed the weighted sum-
mation fusion approach at the score level to further enhance
the performance. The fusion weights were tuned on the
development data set.

IV. EXPERIMENTAL RESULTS

The results of our four subsystems on the development data
are shown in the Table I. We can observe that feature level
fusion with PPP feature improves the performance. Compared
to the MFCC i-vector subsystem (EER = 6.63%), the EER of
MFCC-PPP i-vector subsystem is reduced to 1.06%. On the

other hand, the openSMILE feature outperformed the MFCC
i-vector subsystem which might be due to the inclusion of
prosodic level information.

Furthermore, to obtain a robust countermeasure system,
different backend classification techniques were evaluated.
Table II shows the performance on the development data. We
used Opensmile with LibSVM as our baseline system and we
did not test it on other classifications. Opensmile with SVM
classification is the baseline system. Therefore, we didn’t try
more classifications on this feature. On the other hand, the
two stage PLDA classification gives a poor result on MFCC-
PPP i-vector feature which is the best feature applied on the
other classifications. We didn’t consider fusing the result of
two stage PLDA classification to the proposed system. Among
these six classification methods, LIBPOLY achieves the best
performance with an improvement from the performance of
baseline system 1.57% to 0.29% EER on the development
data. The improvement of LIBPOLY against LIBLINEAR
motivated us to further increase the SVM polynomial kernel
degree.

As shown in Table III, we simulated unknown spoofing at-
tacks by using four kinds of spoofed utterances in the training
and the remaining one in the testing. Although its performance
was as good as LIBLINEAR against familiar spoofing attacks
(shown in table II), it outperformed LIBLINEAR on the
unseen testing data, especially where the unknown attacks
were related to speech synthesis (index 3 and 4). This implied
that PLDA is more resistive than Liblinear to unseen spoofing
attacks. The two stage PLDA only achieved moderate results
in Table II which might be because total speakers number in
the training data is limited (25) and the speaker subspace may
not be orthogonal to the spoofing subspace.

Table IV presents our fusion system results with each
individual spoofing condition on the test data. Here S1 to S5
are know attacks and S6 to S10 are unknown attacks. S3 and
S4 are synthetic waveform, while S1, S2 and S5 are generated
using voice conversion. Our system performed well on all
attacks except S10, on which most challenge participants got
unsatisfied results.

Finally, our fusion system (system 7) achieved 0.38% and
6.15% EER against known and unknown attacks, respectively.

Methods EER(LIBPOLY)
MFCC i-vector 6.63

MFCC-PPP i-vector 1.06
MGDCC-PPP i-vector 2.23

OpenSmile 1.57

TABLE I
PERFORMANCE OF SUBSYSTEMS ON THE DEVELOPMENT DATA (LIBPOLY)

V. CONCLUSIONS

This paper presents an anti-spoofing countermeasure system
based on a multi-feature and multi-subsystem fusion approach.
By fusing the phonetic level phoneme posterior probability
tandem features with the acoustic level MFCC features or
the phase level MGDCC features, the system performance
is significantly enhanced. Combining the proposed i-vector
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System EER
classification method LIBLINEAR LIBPOLY COSINE SCORING KNN Simplified two stage

Feature PLDA PLDA
1 MFCC i-vector 8.46 6.63 16.1 9.95 12.01 17.84
2 PPP i-vector 1.72 1.26 3.6 3.4 2.29 -
3 MFCC-PPP i-vector 1.86 1.06 2.86 2.46 1.89 10.18
4 MGDCC-MFCC-PPP i-vector 2.97 2.06 6.52 3.43 3.95 17.79
5 OPENSmile 2.03 1.57 - - - -
6 Fusion 1+2+3+4 - - 1.63 1.37 1.09 -
7 Fusion 1+2+3+4+5 0.54 0.29 - - - -

TABLE II
PERFORMANCE OF THE PROPOSED METHODS ON THE DEVELOPMENT DATA

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average
EER (Fusion 1+2+3+4+5-LIBPOLY) 0.1137 1.0332 0.0482 0.0412 0.6614 0.7112 0.2297 0.0108 0.1336 29.6649 3.265

TABLE IV
PERFORMANCE OF THE FUSION SYSTEMS WITH DIFFERENT SPOOFING CONDITIONS ON THE TESTING DATA

train set test set PLDA LIBLINEAR
human+spoof[2,3,4,5] human+spoof[1] 3.57 3.4
human+spoof[1,3,4,5] human+spoof[2] 4.8 7.69
human+spoof[1,2,4,5] human+spoof[3] 0.2 0.71
human+spoof[1,2,3,5] human+spoof[4] 0.2 0.66
human+spoof[1,2,3,4] human+spoof[5] 4.49 11.81

TABLE III
PERFORMANCE (EER) OF THE LIBLINEAR AND THE SIMPLIFIED PLDA

BACKENDS ON THE UNKNOWN SPOOFING TESTING CONDITIONS

subsystems with the OpenSMILE baseline which covers the
acoustic and prosodic level information further improves the
final performance. For the back-end modeling, two classes
support vector machine outperforms the one class cosine
similarity or PLDA scoring on the development data where the
spoofing attack types are known. The one class scoring method
achieves more robust performance on the unseen testing data
where the spoofing conditions are unknown.
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