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Abstract—This paper presents an automatic non-native accent
assessment approach using phonetic level posterior and duration
features. In this method, instead of using conventional MFCC
trained Gaussian Mixture Models (GMM), we use phonetic
phoneme states as tokens to calculate the posterior probabil-
ity and zero-oder Baum-Welch statistics. Phoneme recognizers
from five languages are employed to extract phonetic level
features. It is shown that features based on these five languages’
phoneme recognizers are complementary for capturing non-
native information and phoneme duration based features are
most effective in this task. The final proposed fusion system
achieved 0.6089 Spearman’s Correlation Coefficient on the test
set, which outperformed the openSMILE baseline by 43.3%.

I. INTRODUCTION

Applications of speech technology in support of second
language (L2) learning proliferates in recent years, especially
for English language learners [1]. With the introduction of
computer-assisted pronunciation training (CAPT) system , L2
learners are able to practice their pronunciation without the
presence of human teachers. To support CAPT system, many
studies have used automatic speech recognition technology to
evaluate the non-native accent. Reference [2] presented the
Goodness of Pronunciation (GOP) scoring methods which
calculate an individual score for each phoneme of an utter-
ance for which the dictionary-based transcription is known.
Given an acoustic segment of an utterance, it uses a set of
Hidden Markov Models (HMM) to calculate the likelihood
corresponding to a specific phoneme and defines the pronun-
ciation quality score as the duration normalized log posterior
probability. On the other hand, a few studies evaluated the non-
native accent through prosodic parameters which are based on
duration, energy, pitch and fundamental frequency information
and achieved high correlation with human scores [3][4][5].

Recently, GMM based supervector approaches are widely
used for supervised learning of utterance level labels, e.g.,
age, gender, emotion [6][7][8]. These supervector features
originally were proposed for speaker verification tasks [9], but
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also performed well in the paralinguistic challenges. However,
when the utterance duration is short, the first-order Baum-
Welch statistics based supervector features perform poorly as
feature frames are not enough to calculate the statistics, while
the zero-order statistics based supervector achieves better
performance [6]. Due to the short duration of speech utter-
ance in our data set (average 5.23 seconds, include silence),
we adopted zero-order Baum-Welch statistics based posterior
probability supervector as features.

Furthermore, we extended the tokens from the acoustic
MFCC trained GMM components to the phonetic phoneme
states to calculate the posterior probability supervector feature.
Different from previous studies which calculate a score for
each phoneme segment, here the posterior probability feature
is calculated for each frame and then zero-order Baum-Welch
statistics is applied on these frame-based features to calculate
the supervector feature for each utterance.

When determining the phoneme segments, most of previous
researches only use the English phoneme recognizer. However,
non-native pronunciation is a linguistic phenomenon that non-
native speakers tend to carry the intonation, phonological
processes and pronunciation rules from their mother lan-
guage [10]. Only use the English phoneme recognizer may
not be able to capture some special information from non-
native speakers’ mother language. Hence, we further applied
phoneme recognizers from four additional languages to cap-
ture non-native information.

Due to different language proficient levels between native
and non-native speakers, the phoneme duration has been
shown to be an effective feature [4]. In this work, we further
explored some phoneme duration based features. These hand-
crafted and specialized features are promising in this task.
Given subsystems from different features, score level fusion
was employed to further improve the overall performance.

Thre remainder of the paper is organized as follows. The
corpus is explained in Section II and the methods are in
Section III. Experimental results and discussions are presented
in Section IV while conclusions are provided in Section V.

II. CORPUS

The data set in this work is provided by the INTERSPEECH
2015 Computational Paralinguistics Challenge organizers [11].
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Fig. 1. The System Overview

The training set comes from the AUWL [4] and ISLE [12]
corpora. For the AUWL, there are 3732 speech files (5.5 hours,
432 distinct sentences/phrases) from 31 speakers (16 German,
4 Italian, 3 Chinese, 3 Japanese, 5 other). From ISLE, there
are 158 speech files (0.3 hours, 5 distinct sentences) from 36
speakers (20 German, 16 Italian). The development set is a
subset of the C-AuDiT database [13] and there are 999 speech
files (2.7 hours, 19 distinct sentences) from 58 speakers (26
German, 10 French, 10 Spanish, 10 Italian, 2 Hindi). The test
set has 594 speech files (1.4 hours, 11 distinct sentences) from
54 speakers (23 German, 12 Chinese, 19 others). The scoring
scale of the training set and the testing set are the same that
range from 1 for normal to 5 for unusual, while development
set ranges from 0 for good to 2 for bad. To better model the
real-life situation, all three data sets are disjunct from each
other with respect to both speakers and contents [11].

III. METHODS

The overview of the proposed system is demonstrated in
Fig. 1. In our proposed system, there are multiple subsystems,
each using a specific feature, namely, openSMILE feature,
MFCC-GMM posterior probability (MGPP) feature, phoneme
posterior probability (PPP) feature, and seven phoneme dura-
tion based features. We first present the the proposed features
in section III-A. Then section III-B describes the regression
and score level fusion methods.

A. Features

1) The openSMILE feature: The utterance level 6373 di-
mensional openSMILE features was extracted by the openS-
MILE toolkit and provided by the 2015 Paralinguistic Chal-
lenge organizers [11]. Since various kinds of features, such as
MFCC, loudness, auditory spectrum, voicing probability, F0,
and F0 envelop, etc., are included, this feature set can capture
both the acoustic and prosodic level information to evaluate
non-native accent. In our system, it serves as a baseline.

2) The MFCC-GMM posterior probability (MGPP) feature:
For each utterance in the data set, the Universal Background
Model (UBM) is applied to extract MGPP feature. Given the
GMM-UBM λ with M Gaussian components,

λi = {ωi, µi,Σi}, i = 1, ...,M (1)

For each frame-based MFCC feature xt, the occupancy
posterior probability is calculated as follows:

P (λi|xt) =
ωipi(xt|µi,Σi)∑M

j=1 ωjpj(xt|µj,Σj)
(2)

This posterior probability reveals the fraction of this MFCC
feature xt belonging to the ith Gaussian component [8]. The
Gaussian component can better represent the feature vector if
with larger posterior probability. Since the UBM is trained by
both native and non-native speeches, this posterior probability
can reveal the different distribution between native and non-
native accents. Then the MGPP feature is defined as follows:

b = [b1, b2, ..., bM ], bi =
yi
T

=
1

T

T∑
1

P (λi|xt) (3)

MGPP =
√

b (4)

Equation (3) calculates the zero-order Baum-Welch statistics
and we adopt

√
b as MGPP features in order to apply the

Bhattacharyya probability product (BPP) kernel [14].
3) The phoneme posterior probability (PPP) feature: For

each utterance in the data set, PPP feature extraction uses the
phonetic phoneme states (three states per phoneme) instead of
the MFCC trained GMM as tokens to calculate the posterior
probability. Then both (3) and (4) are applied to extract
PPP feature. We believe that this histogram style feature can
provide the phoneme confidence information for distinguishing
native and non-native accents.

In this work, we employed the multilayer perceptron
(MLP) based phoneme recognizer [15] to calculate frame-
based phoneme posterior probability as well as recognizing
phoneme components for phoneme duration based features.
As has already been mentioned, non-native pronunciation is
orginated from the phenomenon that non-native speakers tend
to keep his habits of mother language. To better capture
non-native information, instead of only using acoustic model
from English, we also used models from other four language,
namely Czech, Hungarian, Russian and Mandarin to recognize
phonemes and further extracted features based on these dif-
ferent languages’ phonemes. English based model was trained
with 1000 neurons in all nets using switchboard and fisher
databases. Mandarin based model was trained by call friend,
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call home databases. Other three language based models were
trained on SpeechDat-E Databases.

4) Phoneme duration based features: An overview of
phoneme duration based features are shown in Table I, which
contains seven feature categories. Based on the recognized
phonemes segments from five language MLP phoneme rec-
ognizers, each feature category generates five features. Note
that we omit the silence at the beginning and the end of speech.

The reciprocal phoneme-based rate of speech (ROS) is
actually the average phoneme duration. This is a basic but
fundamental property of speech since it reveals how fast the
speaker said. The second to the fourth feature categories
reveal the speaker’s hesitation during speech from different
perspectives. Non-native speakers are more likely to hesitate
during speech and thus there are more pause phonemes. The
next two features directly compares the difference between
observed phoneme duration and corresponding native or non-
native phoneme duration (native phoneme statistics are cal-
culated by training data with score less than 1.5 and non-
native phoneme statistics are by training data with score larger
than 2.5). Since non-native speakers intend to maintain some
pronunciation rules of their mother languages, they might
speak some specific phonemes frequently. The last feature,
phoeme frequency, is used to reveal such information.

Note that except the first feature, reciprocal ROS, all other
phoneme duration based features are normalized by ROS in
order to remove the effect of speaking rate. On the other hand,
good speakers (with good nativeness score) tend to speak faster
than poor speakers. Hence, speaking rate itself is an useful
feature but it may affect the aptness of other features.

B. Regression and fusion

We adopt the LIBLINEAR [16] for the Support Vector
Regression with parameters tuned from the cross validation
sets. As for the score fusion, we adopt two level SVR: the
first level generates score for each subsystem and the second
level further use these scores as input feature to generate the
final score. The score fusion model is trained by another cross
validation set which is different from the one used to tune

TABLE I
AN OVERVIEW OF PHONEME DURATION BASED FEATURES

Feature Category Definition
Reciprocal Rate of Speech

(ReciROS)
The reciprocal of the number of phonemes
per time.

Average pause phoneme
duration (AvgPauDur)

The average pause phoneme duration of a
speech.

Voiced phoneme duration
ratio (VoiPhoDurRatio)

The ratio between the sum of voiced
phoneme duration and the total duration.

Voiced phoneme number
ratio (VoiPhoNumRatio)

The ratio between the number of voiced
phonemes and all phonemes.

Phoneme duration native
difference (PhoDurNatDiff)

The difference between the native phoneme
duration and observed phoneme duration.

Phoneme duration
non-native difference

(PhoDurNonDiff)

The difference between the non-native
phoneme duration and observed phoneme
duration.

Phoneme frequency
(PhoFreq)

The phonemes frequency within an utter-
ance (set inexistent phoneme to zero).

the parameters. When evaluating the testing data set, since the
training and development data are with different scales used
for annotation, only the training data is used for modeling and
the score fusion model is exactly the same as the one tuned
on the cross validation set.

IV. EXPERIMENTAL RESULTS

The experimental results on the development set with
different features for SVR are shown in the Table II. The
performance is measured by Spearman’s Correlation Coef-
ficient (between the machine evaluated score and human
evaluated score). First, the 6373 dimensional openSMILE
baseline outperformed 256 dimensional MGPP feature, which
might be because that openSMILE includes both acoustic and
prosodic information. Only MFCC feature itself might be not
powerful enough to differentiate native and non-native accent.
Using prosodic contour features [6] together with GMM-UBM
approach might be promising, which is a topic for future work.

Second, the PPP feature achieved better performance than
the openSMILE baseline. The underlying reason might be
that, besides the acoustic information, it also included phonetic
information from five different languages. From last column of
Table III, we can find that all these single language based PPP
features worked worse than openSMILE baseline. However,
combining these single language based PPP features improved
the result and beated the baseline.

Third, we can find the System 4, which is the fusion system
of subsystems form seven phoneme duration based feature,
achieved the best result. Table III gives detailed results of each
phoneme-based feature on single language and five languages,
and the best one among these languages is in bold font. We
can find that first three features are very effective that even
using only one feature from one single language can beat
the openSMILE baseline. Furthermore, features based on only
English language fail to perform best in any feature type. To
some degree, it reveals that the distinguishing ability is limited
if only using English phonemes. After combining features
from five languages (the last row), most of these features are

TABLE II
PERFORMANCE ON THE DEVELOPMENT SET WITH DIFFERENT FUTURES

FOR SVR AND SCORE LEVEL FUSION

System Features Parameter
C Correlation

1 openSMILE 0.002 0.4119
2 MGPPa 0.01 0.2846
3 PPP (5 languages) 0.1 0.4251

4 Phoneme duration based
features (5 languages)

Refer to
Table IIIb 0.5623c

5 Fusion 4+2 0.5614

6 Fusion 4+2+3 0.5694

7 Fusion 4+2+3+1 0.5617

8 Fusion 4+3 0.5706
a The size of GMM is 256.
b It depends on different features, please refer to Table III.
c This is the fusion score of seven phoneme duration based feature

subsystems.
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TABLE III
PERFORMANCE ON THE DEVELOPMENT SET USING FEATURES CALCULATED WITH TOKENS FROM DIFFERENT LANGUAGES

Features &
Languages ReciROS AvgPauDur VoiPhoDurRatio VoiPhoNumRatio PhoDurNatDiff PhoDurNonDiff PhoFreq PPP

English 0.4861 0.4958 0.4845 0.3996 0.3028 0.3659 0.3643 0.3628
Mandarin 0.4752 0.5135 0.5635 0.4895 0.4578 0.4581 0.3478 0.3577

Czech 0.4993 0.5073 0.5423 0.5613 0.2998 0.2887 0.3676 0.3400
Hungarian 0.5392 0.5273 0.5666 0.5802 0.3744 0.3558 0.3907 0.3704

Russian 0.5195 0.5462 0.5887 0.5995 0.2532 0.3000 0.4101 0.3531
Parameter C 0.01 0.001 10 10 0.01 0.01 0.01 0.1
5 languages 0.5400 0.5368 0.5207 0.5892 0.4909 0.4903 0.4609 0.4251

TABLE IV
PERFORMANCE ON TEST SET WITH BASELINE AND SYSTEM 8

openSMILE baseline System 8
Correlation 0.4250a 0.6089
a The detailed result is presented in [11].

Fig. 2. Performance on development set with phoneme duration based features
from single English language or five languages

improved or achieve the result close to the best one among
five single language. When compared with features from
only English language, all fused features from five languages
achieved better results, which is shown in the Fig. 2.

With respect to the systems with score fusion, as shown
in the Table II, the System 8 which combining PPP feature
and phoneme duration based features achieved the best per-
formance 0.5706 on the development set. On the other hand,
Table IV provides the results of openSMILE baseline and
System 8 on test set (we cannot provide the result of each
system on test set because that the label of test set is not
provided and we only have 10 trails to submit the result).
Our proposed System 8 achieved 0.6089 on test set which
outperformed the openSMILE baseline (0.4250) by 43.3%.

V. CONCLUSIONS

This paper presents an automatic non-native accent as-
sessment approach using phoneme posterior probability and
phoneme duration based features from multiple languages. To
better capture non-native information, phoneme recognizers
from five different languages are employed. Experimental
results show that, features based on these five languages
phonemes are complementary for capturing non-native infor-
mation. Phoneme duration based features are most effective
features and the performance is further improved after score
fusion with PPP System which provides more information

bout phoneme confidence. MGPP feature, which is based on
GMM-UBM approach, does not perform well in this task.
However, instead of using MFCC, other features such as
prosodic contour features might be promising and this is a
topic for our future work.
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