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Abstract—We analyze the behaviors of active noise control
with a time-varying primary path using a statistical-mechanical
method. The principal assumption used in the analysis is that
the impulse responses of the primary path and adaptive filter are
sufficiently long. We analyze a novel model in which the reference
signal is not necessarily white and the primary path is time-
varying while its norm is kept constant in the mean sense. We
show the existence of macroscopic steady states and the optimal
step size.

I. INTRODUCTION

Active noise control (ANC), which has been practically
realized owing to the progress of digital signal processing,
is implemented using an adaptive filter [1], [2]. The least-
mean-square (LMS) algorithm is the most commonly used
algorithm for adaptive filters [3], [4], [5]. When we apply the
LMS algorithm to ANC, we should estimate the secondary
path beforehand and use inputs that have passed through the
estimated secondary path. This procedure is called the Filtered-
X LMS (FXLMS) algorithm.

Various methods have been proposed for theoretically ana-
lyzing the LMS algorithm. The principal method is to use the
independence assumption [6]. The FXLMS algorithm has also
been analyzed on the basis of the independence assumption
[7], [8]. In this assumption, the input vectors of the tapped-
delay line are assumed to be independently generated at each
time step. However, the actual input vector components are
merely shifted to the next position. Hence, each input vector
is strongly related to the previous one and the vectors are thus
not independent. Owing to this fact, analytical results based on
the independence assumption cannot precisely and generally
explain experimental results [4], [7]. In addition, analyses of
cases where the step size is small [9], [10] and the periodic
reference signal is assumed [11] have been reported.

In our previous paper reported at APSIPA ASC 2014 [12],
we analyzed the behaviors of the FXLMS algorithm when
the reference signal is white and the primary path is naively
time-varying by applying a statistical-mechanical method . In
the previous naive model, the norm of the primary path and
the mean square error (MSE) diverged and the optimal step
size disappeared, indicating that the previous model was rather
unrealistic.

In this paper, we propose an analytically solvable model,
where the primary path is time-varying and the norm of the
coefficient vector of the primary path is kept constant in the

mean sense. The model is analyzed by applying a statistical-
mechanical method [13], [14], [15], [16]. In addition, the
model is generalized to nonwhite reference signal. The anal-
ysis gives meaningful results.

II. ANALYTICAL MODEL OF FXLMS ALGORITHM

Figure 1 shows a block diagram of the ANC system
considered in this paper.

Fig. 1. Block diagram of the ANC system.

The primary path P is represented by an N -tap FIR filter. Its
coefficient vector is p(n) = [p1(n), p2(n), . . . , pN (n)]>. Each
coefficient pi(0) is independently generated from a distribution
with a mean of zero and a variance of unity. Here, > denotes
transposition and n denotes the time step. The primary path
is time-varying, that is,

p(n+ 1) = a
1
N p(n) +

√
1− a 2

Nw(n), (0 ≤ a ≤ 1), (1)

where w(n) is an N -dimensional vector. Each coefficient
wi(n) is independently generated from a distribution with a
mean of zero and a variance of unity at every time step. a
is a parameter that controls the rate of time variation of the
primary path. Here, a = 1 corresponds to the time-invariant
primary path. Note that Eq. (1) means that the norm of the
coefficient vector of the primary path is kept constant in the
mean sense although the primary path itself is time-varying.

The adaptive filter H is also an N -tap FIR filter. Its
coefficient vector is h(n) = [h1(n), h2(n), . . . , hN (n)]>. The
initial value hi(0) of each coefficient is zero. The reference
signal x(n) is drawn from a distribution with

〈x(n)〉 = 0, 〈x(n)x(n− k)〉 = rk/N, (2)
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where 〈·〉 denotes expectation. The reference signal is shifted
through the tapped delay line in the FIR filter. Therefore, the
tap input vector is x(n) = [x(n), x(n−1), . . . , x(n−N+1)]>.
The output of the primary path P is d(n) = p>(n)x(n). On
the other hand, the output of the adaptive filter H is u(n) =
h>(n)x(n).

The secondary path C is modeled by a K-tap FIR filter.
Its coefficient vector is c = [c1, c2, . . . , cK ]> and is time-
invariant. The output y(n) of the secondary path is

y(n) =
K∑
k=1

cku(n− k + 1). (3)

An error signal e(n) is generated by adding an independent
background noise ξ(n) to the difference between d(n) and
y(n). That is,

e(n) = d(n)− y(n) + ξ(n). (4)

Here, the mean and variance of ξ(n) are zero and σ2
ξ , respec-

tively.
The LMS algorithm is used to update the adaptive filter.

Here, the coefficient vector c of the secondary path is un-
known in general. Therefore, the estimated secondary path
C̃, which has been estimated in advance using some other
method, is used to update the adaptive filter. This procedure is
called the FXLMS algorithm. When the estimated secondary
path C̃ is a K-tap FIR filter and its coefficient vector is
c̃ = [c̃1, c̃2, . . . , c̃K ]>, the update obtained by applying the
FXLMS algorithm is

h(n+ 1) = h(n) + µe(n)

K∑
k=1

c̃kx(n− k + 1) (5)

where µ is the step-size parameter.

III. THEORY

The mean square error (MSE) is〈
e2(n)

〉
=
〈

(d(n)− y(n) + ξ(n))
2
〉

(6)

=
〈
d2(n)

〉
− 2

K∑
k=1

ck

〈
d(n)u(n− k + 1)

〉
+ σ2

ξ

+
K∑
k=1

K∑
k′=1

ckck′
〈
u(n− k + 1)u(n− k′ + 1)

〉
. (7)

Equation (7) includes products of d and u and products of
u and u including cases where their time steps are different.
To calculate these products, we introduce the N -dimensional
vectors kj(n) = [kj,1(n), kj,2(n), . . . , kj,N (n)]>, whose ele-
ments are kj,i(n) = hi+j(n). That is, kj(n) is the j-shifted
vector of the coefficient vector h(n) of the adaptive filter. Note
that k0(n) = h(n).

In the following, the limit N →∞ is considered. Note that
this long-impulse-response assumption or long-filter assump-
tion is reasonable, considering actual acoustic systems. When
the shift number j is O(1), we obtain

h>(n)x(n) ' k>j (n)x(n− j). (8)

Equation (8) is based on the fact that the shift of the tap input
vector is canceled by the shift of the elements of the adaptive
filter. Here, the effect of the edge of the adaptive filter can be
ignored since both h(n) and kj(n) are N -dimensional, i.e.,
infinitely long, vectors. Equation (8) implies that the gap j in
the time direction can be replaced by the subscript of vector
k. In addition, we introduce macroscopic variables defined by

Rj =
1

N

N∑
i=1

pi(n)kj,i(n), (9)

Qj =
1

N

N∑
i=1

hi(n)kj,i(n). (10)

Equations (9) and (10) indicate that Rj and Qj are the cross-
correlation between p(n) and h(n) and the autocorrelation of
h(n), respectively. Then, we obtain

〈d(n− j)u(n)〉 =
M∑

i=−M
Riri−j , (11)

〈u(n− j)u(n)〉 =
M∑

i=−M
Qiri−j , (12)

〈d(n− j)d(n)〉 = rj . (13)

We have omitted the time steps of the microscopic variables
since they do not change by O(1) in the O(1) time updates
in the model treated in this paper, as described later. We can
express the MSE (7) in terms of Rj and Qj as

〈
e2(n)

〉
=

K∑
k=1

ck

M∑
i=−M

(
K∑
k′=1

ck′Qiri−k+k′

− 2Riri+k−1

)
+ r0 + σ2

ξ . (14)

This formula shows that the MSE is a function of the macro-
scopic variables Ri and Qi. Therefore, we derive differential
equations that describe the dynamical behaviors of these
variables in the following.

We first derive a differential equation for Rj . When the
coefficient vector h(n) of the adaptive filter is updated, the
j-shifted vector kj(n) is also changed. This change can be
described as

kj(n+ 1) = kj(n) + µe(n)
K∑
k=1

c̃kx(n− k + 1− j). (15)

Note that the time step of the tap input vector x is shifted by
j compared with that in (5). Multiplying both sides of (1) by
(15), we obtain

NRj(n+ 1) = a
1
N NRj(n) + a

1
N µe(n)

K∑
k=1

c̃kd(n− k + 1− j)

+

√
1− a

2
N w

>
(n)

(
kj(n) + µe(n)

K∑
k=1

c̃kx(n− k + 1− j)
)
. (16)

In (16), the l.h.s. and the first term on the r.h.s. are O(N) and
the other terms are O(1). This means that the coefficient vector
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h(n) of the adaptive filter should be updated O(N) times to
change Rj by O(1). Therefore, we introduce the continuous
time t, which is the time step n normalized by the tap length
N , and use it to represent the adaptive process. If the adaptive
filter is updated Ndt times in an infinitely small time dt, we
can obtain Ndt equations as follows:

NRj(n+ 1) = a
1
N NRj(n)

+ a
1
N µe(n)

K∑
k=1

c̃kd(n− k + 1− j),

(17)

a−
1
N NRj(n+ 2) = NRj(n+ 1)

+ µe(n)

K∑
k=1

c̃kd(n− k + 2− j), (18)

...
...

...

a−
Ndt−1
N NRj(n+Ndt) = a−

Ndt−2
N NRj(n+Ndt− 1)

+ a−
Ndt−2
N µe(n+Ndt− 1)

×
K∑

k=1

c̃kd(n− k +Ndt− j). (19)

Here, terms including w are omitted in (17) – (19) since their
expectations are zero. Note that each equation is multiplied by
the power of a. Summing all these equations, we obtain

N(Rj + dRj) = a
dt
NRj +

Ndt∑
i=1

a
i
N Ndtµ

〈
e(m)

K∑
k=1

c̃kd(m− k + 1− j)
〉
.

(20)

Here, we can represent the effect of the probabilistic variables
by their means since the updates are executed Ndt times,
that is, many times, to change Rj by dRj . m is an auxiliary
time step that is introduced to represent the difference in time
steps. We see that

〈
e(m)

∑K
k=1 c̃kd(m− k + 1− j)

〉
in (20)

includes many products of d and u from (3) and (4). Since we
can represent this expectation using the macroscopic variables,
we obtain differential equations that describe the dynamical
behaviors of Rj in a deterministic form as

dRj

dt
= (ln a)Rj + µ

K∑
k′=1

c̃k′
(
r−k′+1−j −

K∑
k=1

M∑
i=−M

ckri+k−k′−jRi

)
,

(21)

where δ denotes the Kronecker delta. Here, we also used
l’Hôpital’s rule.

Next, multiplying (5) by (15) and proceeding in the same
manner as for the derivation of the above differential equation
for Rj , we can derive a differential equation for Qj , which is
given by

dQj

dt
= µ

M∑
i=−M

K∑
k′=1

c̃k′

[
(ri−γ + ri−ε)Ri

−
K∑
k=1

ck(ri−(k−k′+j) + ri−(k−k′−j))Q|i|

− µ
{
sgn(γ)

|γ|∑
k′′=1

K∑
k′′′′=1

c̃k′′′′rζ−k′′′′

(
rα + σ

2
ξδα,0

−
K∑
k=1

ck

(
(ri−(1−k+α) + ri−(1−k−α))Ri

−
K∑

k′′′=1

ck′′′ri−(α−k+k′′′)Q|i|

))}

− µ
{
sgn(ε)

|ε|∑
k′′=1

K∑
k′′′′=1

c̃k′′′′rη−k′′′′

(
rβ + σ

2
ξδβ,0

−
K∑
k=1

ck

(
(ri−(1−k+β) + ri−(1−k−β))Ri

−
K∑

k′′′=1

ck′′′ri−(β−k+k′′′)Q|i|

))}]

+ µ
2

M∑
i=−M

{
r0 +

K∑
k=1

ck

[
K∑
k′=1

ck′ri−k′+kQ|i| − 2ri−k+1Ri

]
+ σ

2
ξ

}

×
K∑

k′′=1

K∑
k′′′=1

c̃k′′ c̃k′′′rk′′−k′′′+j , (22)

where

α ≡ Θ(γ)γ − k′′, β ≡ Θ(ε)ε− k′′,
γ ≡ j + 1− k′, ε ≡ −j + 1− k′,
ζ ≡ −Θ(−γ)γ − k′′ + 1, η ≡ −Θ(−ε)ε− k′′ + 1.

Here, Θ(·) and sgn(·) denote the step function and sign
function, respectively.

Considering the 2M + 1 vectors kj , j = −M, . . . ,M, and
assuming Rj = Qj = 0 when |j| > M , then (21) and (22)
are first-order ordinary differential equations with 3M + 2
variables, that is,

d

dt
z = Gz + b, (23)

where z = [Q0, · · · , QM , R−M , · · · , R0, · · · , RM ]>. The
matrix G and vector b are determined by (21) and (22). Using
the fact that z at t = 0 is a zero vector as the initial condition,
we can analytically solve (23) to obtain

z(t) = eGt(G−1eGtb + G−1b). (24)

IV. RESULTS AND DISCUSSION

We confirm the validity of the theory obtained in the
previous section by comparison with simulation results. Figure
2 shows the learning curves obtained theoretically and by
simulation. The conditions are µ = 0.1, rk = δk,0, that
is, the reference signal is white, σ2

ξ = 0, K = 2, and
c1 = c2 = c̃1 = c̃2 = 1. In the theoretical calculation, the
results are obtained by substituting Rj and Qj , which are
obtained by solving (23), into (14) in the case of M = 100.
In the computer simulations, N = 200 and ensemble means
for 104 trials are plotted. Figure 2 shows that the theoretical
results agree with the simulation results. The primary path
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does not have the time-varying property when a = 1. When
a is relatively small, we see that the MSE increases and
approaches a steady value after taking the minimum value.
These phenomena are different from those reported in [12].
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Fig. 2. Learning curves obtained theoretically and by simulation.

Figure 3 shows the relationship between the step size µ and
the steady-state MSE. The steady-state MSE can be calculated
by letting the l.h.s. of (23) be a zero vector. Our previous naive
time-varying model [12] was also analytically solvable but
rather unrealistic since the MSE diverged and there were no
steady states. In contrast, the time-varying model analyzed in
this paper has steady states. Therefore, this novel model based
on Eq. (1) is interesting and its analysis gives meaningful
results.

The conditions are a = 0.99, 0.95, 0.9, 0.8, and 0.6, and
σ2
ξ = 0. The correlation functions of the reference signal are
rk = δk,0 (white), and r0 = 1, r±1 = 0.5, r±k = 0 when
k ≥ 2 (nonwhite). In the theoretical calculation, M = 50.
In the computer simulations, N = 103 and the ensemble
means from t = 90 to t = 100 for 103 trials are plotted. The
theoretical results agree with the simulation results reasonably
well. As the step size µ increases, the noise misadjustment
increases gradually and the MSE increases. The upper limit
of µ for the convergence of the MSE is µ = 0.5 for the
white reference signal and µ = 0.3317 for this nonwhite
reference signal. Taking a closer look at Fig. 3, when the
step size µ is small, as µ decreases, the MSE also increases.
This is due to the lag misadjustment for small µ. We see
that an optimal step size µ exists owing to the trade-off
between the noise misadjustment and the lag misadjustment.
As a decreases, the optimal value of µ decreases. When
a = 0.99, 0.95, 0.9, 0.8, and 0.6, the optimum step sizes
are µopt = 0.427, 0.383, 0.356, 0.319, and 0.256 for the
white reference signal and µopt = 0.242, 0.218, 0.203, 0.184,
and 0.150 for this nonwhite reference signal, respectively.
Note that the optimum step sizes do not disappear. These
phenomena are different from those reported in [12] in which
there were not the optimum step sizes since the MSE diverged.

V. CONCLUSION

We have analyzed the behaviors of the FXLMS algorithm
using a statistical-mechanics approach. In particular, we have
analyzed the case where the reference signal is not necessarily
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Fig. 3. Relationship between step size µ and steady-state MSE obtained
theoretically and by simulation.

white and the primary path is time-varying while its norm
is kept constant in the mean sense. The obtained theory
quantitatively agrees with the results of computer simulations.
We have shown the existence of macroscopic steady states and
that the optimal step size does not disappear in this model.
These results are in contrast to those of our previous naive
model reported at APSIPA ASC 2014.
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