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Abstract—Towards low latency query transmission via wireless
link, methods have been proposed to extract compact visual de-
scriptors on mobile device and then send these descriptors to the
server at low bit rates in recent mobile image retrieval systems.
The drawback is that such on-device feature extraction demands
heavy computational cost and large memory space. An alternate
approach is to directly transmit low quality JPEG compressed
query images to the server, but the lossy compression results
in compression artifacts, which subsequently degrade feature
discriminability and deteriorate the retrieval performance. In this
paper, we present selective aggregated descriptors to address this
problem of mobile image retrieval on low quality query images.
The proposed mechanism of selective aggregation largely reduces
the negative impact of noisy features caused by compression
artifacts, enabling both low latency query transmission from
mobile device and effective image retrieval on the server end. In
addition, the proposed method allows fast descriptor matching
and less storage of visual descriptors for large database. Extensive
experiments on benchmark datasets have shown the consistent
superior performances of the proposed approach over the state-
of-the-art.

I. INTRODUCTION

Smart phones and Tablet PCs have shown great potentials

in mobile image retrieval [3][20], thanks to the integrated

functionality of high resolution color camera and broadband

wireless network connection. Many mobile image retrieval

applications (such as Google Goggles [1] and Amazon Flow

[2]) have been developed for retrieving similar images con-

taining a rigid object in a large set of database images, given

a query image of that object (such as CD/book cover, poster,

logo, landmark, etc). In general, most mobile image retrieval

systems follow the client-server architecture. A captured query

is sent through the wireless network to the server, where image

retrieval is conducted to identify the relevant images from an

image database stored on the server.

To reduce delivery latency for better user experience, the

upstream query data is expected to be as small as possible,

especially for unstable or limited bandwidth wireless connec-

tion. Recent works have proposed to extract compact visual

descriptors of query images on the mobile device, and then

send such descriptors over a wireless link at low bit rates (see

Fig. 1(a)). The compact descriptors extraction [8][11][10][19]

follows a typical pipeline: statistics of local invariant features

(such as SIFT [12] and SURF [13]) are aggregated to form

a fixed-length vector representation, which is subsequently

compressed into compact descriptors.

Aside from low latency query delivery, such on-device

descriptors extraction may demand heavy computational cost

as well as memory footprint, making it impractical to work

with mobile devices that have limited processor power and

RAM. One example is local feature detection and description

(such as SIFT [12]) on mobile device typically takes a few

seconds. Another example is locally aggregated descriptors

(such as Bag-of-Words (BoW) [15][22]) often involves a large

visual vocabulary containing 0.1-1 million visual words. The

vocabulary would cost hundreds of megabytes to be loaded in

the limited RAM of mobile device.

As smart phones are hardware friendly to support fast JPEG

image compression at extremely low cost, an alternate ap-

proach is to directly transmit JPEG compressed query images

over a wireless link, the subsequent descriptor extraction and

matching are performed on the server side (see Fig. 1(b)). One

can reduce the compressed image size by decreasing the JPEG

quality factor, however, the lossy compression introduces com-

pression artifacts appeared in low quality images. It is noticed

that compression artifacts would degrade the discriminability

of detected local features, and deteriorate the retrieval and

matching performance (see Section IV). As shown in Fig. 2,

the number of inlier matches (i.e., true positive matches)

is largely reduced with the quality of query image (from

100 to 5). Thus, it is crucial to consider a mechanism that

incorporates the selection of informative local features into

descriptor extraction.

In this paper, we present selective aggregated compact

descriptors to address the problem of low quality image

retrieval. Our contributions are three fold. First, state-of-the-art

locally aggregated descriptors [9][8] unfairly assume that all

local features extracted from an image contribute equally to the

subsequent aggregation stage, resulting in suboptimal retrieval

accuracy. We propose a selective aggregation to reduce the

negative impact of noisy local features on the aggregated

descriptors. Second, we propose to model the characteristics

of match/non-match keypoint pairs for selecting informative

local features, with the observation that true positive match

keypoints are statistically associated with informative local

features (see Fig. 2). Third, the proposed approach enables

both low bit rate query transmission (e.g., 6 KB per image)

and effective image retrieval. In addition, the proposed method
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Fig. 1. Low bit rate mobile image retrieval frameworks: (a)Extracting and compressing visual descriptors on the mobile device, and sending the compact codes
over a wireless link (Top), and (b)Transmitting highly compressed JPEG query images, and subsequent descriptors extraction and matching are performed on
the server (Bottom).

Quality = 100, Image Size = 163kB  

Query Image Reference Image

Quality = 5, Image Size = 5.45kB
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Fig. 2. Negative effect of lossy JPEG compression on local invariant feature
matching. A highly compressed query image (Quality = 5) degrades the
discriminability of detected features, which subsequently reduces the number
of inlier matches (highlighted in green). The informative local features
detected by the proposed method are denoted in red, while the noisy ones
are in yellow.

allows fast descriptor matching as well as light storage of com-

pact descriptors extracted from large scale database images.

Our extensive experiments on benchmark datasets (such as

UKbench) combined with 1 million distractor images have

shown the consistent superior performances of the proposed

approach over the state-of-the-art [9][8][10]. For example,

mean average precision (mAP) is improved from 33.9% to

69.4% on Graphics dataset (JPEG quality Q = 30 for query

images), compared to the compressed Fisher vector [8].

II. RELATED WORK

Local invariant features like SIFT [12] and SURF [13]

cannot meet the requirement of compactness, as the size of

local descriptors usually exceeds the size of raw image itself.

There are a lot works on compressing local descriptors [7][6].

For instance, Chandrasekhar et al. [6] proposed a Compressed

Histogram of Gradient (CHoG), which adopts Gagie tree

coding to compress each local feature into approximate 60

bits. Suppose that 1,000 keypoints are detected per image, the

overall feature size is approximately 8KB.

Recent work stepped forward to compute statistics of local

features and then aggregate them to form a fixed-length vector

representation, which is subsequently compressed for efficient

storage and transmission. The Bag-of-Words (BoW) represen-

tation [14][15][25] is the most widely adopted method for this

purpose. Each local feature from an image is quantized to its

closest visual word in a visual vocabulary. BoW accumulates

the number (0-order statistics) of local features assigned to

each visual word. Chen et al. [21] and Ji. et al. [5][4] proposed

to further compress the quantized BoW histogram.

Recently, the Fisher Vector (FV) [8] extends the BoW by

computing higher-order statistics of the distribution of local

features, e.g., Gaussian Mixture Model (GMM). Specifically,

FV aggregates the gradient vector of each local feature’s

likelihood w.r.t. the GMM parameters (mean or variance) for

each Gaussian. Jegou et al. [9] proposed a non-probabilistic

FV, namely, the Vector of Locally Aggregated Descriptors

(VLAD), to aggregate residual vectors (difference between

local feature and its nearest visual word). Both FV and VLAD

can be compressed into compact binary codes [8][9] for fast

Hamming distance computation. Chen et al. [10] introduced

the Residual Enhanced Visual Vector (REVV), where lin-

ear discriminant analysis (LDA) is employed to reduce the

dimensionality of VLAD, followed by sign binarization to

generate compact codes. Lin et al. [19] further improved

the compactness of these binary aggregated descriptors by

progressively coding informative sub-vectors, which achieves
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comparable retrieval accuracy to the raw FV or VLAD.

III. AGGREGATING INFORMATIVE LOCAL FEATURES

In this section, we introduce the selective aggregated com-

pact descriptors. We first give an overview of the proposed

method in III-A. In III-B, we formulate the selective aggrega-

tion as a keypoint ranking problem, and implement the key-

point ranking by employing likelihood ratio test with Gaussian

Mixture Models (GMM) that fit the empirical distribution of

match/non-match keypoint pairs. Finally, we discuss how to

estimate the parameters of the GMM distribution in III-C.

A. Overview

We illustrate the pipeline of locally aggregated compact

descriptors in Fig. 3. Three stages including feature coding,

aggregation and compression, are usually adopted to generate

a compact descriptor.

Feature coding. Let I = {(zt,xt)}
T
t=1 denote a collection

of d-dimensional local features x and their detected keypoints

z in image I. In this work, we focus on the SIFT feature

(d = 128), and the keypoint z = (η, θ, v, ξ) is of four

dimensions, where η, θ, v and ξ denote scale, orientation,

peak value in scale space and the distance from a keypoint to

the image center, respectively. The goal of feature coding is

to embed local features x in a visual vocabulary space based

on a encoder r:

r : x ∈ Rd → r(x) ∈ Rd. (1)

Specifically, the BoW approach obtains a codebook Q by k-

means clustering, where Q = {q1, ...,qK} is comprising of K
visual words, and the encoder r quantizes each local feature

to its nearest visual word q1NN from Q:

r(x)BoW = q1NN . (2)

The VLAD encodes each local feature to its residual error:

r(x)V LAD = x− q1NN . (3)

The FV [16] extends the discrete k-means clustering to prob-

ability GMM clustering. We denote the GMM codebook as:

qk = {ωk, µk, σ
2
k}, k = 1, ..., K , where ωk, µk and σ2

k are the

weight, mean vector and variance vector of the kth Gaussian

(visual word), respectively. In this work, we derive the codes

as the gradient of local feature’s likelihood w.r.t. the mean µk

of each Gaussian:

r(x)FV = γ(k)σ−1
k (x− µk), (4)

where γ(k) = ωkpk(x)/
∑K

l=1 ωlpl(x) denotes the probability

of local feature x being assigned to the kth Gaussian.

Feature aggregation accumulates the feature codes of local

descriptors into a fixed-length vector representation for an

image. State-of-the-art approaches usually employ average

pooling to aggregate the feature codes for each visual word:

g(k) =
∑

x∈Xk

f(r(x)), (5)

where Xk represents the subset of local features in image I that

are assigned to the kth visual word. f(·) denotes an operation

on the feature codes r(x). In the case of BoW, f(·) simply

refers to the occurrences of each visual word in an image:

g(k)BoW =
∑

x∈Xk

1. (6)

Thus, the dimensionality of BoW representation is K .

While the VLAD and FV directly accumulate the residual

vectors:

g(k)V LAD =
∑

x∈Xk

r(x)V LAD, (7)

g(k)FV =
∑

x∈Xk

r(x)FV . (8)

Finally, the VLAD and FV g are formed by concatenating the

sub-vectors g = [g(0), ..., g(K)] of all visual words and is

therefore Kd-dimensional.

Feature compression aims to compress high dimensional

aggregated descriptors g into binary codes, which supports

ultra-fast Hamming distance computation (XOR operation and

bit count) as well as light storage of features for large scale

image retrieval. For instance, the Compressed Fisher vector

(CFV) [8] proposed to quantize each dimension of the FV

representation into a single bit based on a sign function.

Formally, we project each element g of descriptors g to 1

if g > 0; otherwise, 0:

sgn(g) =

{

1 if g > 0
0 otherwise.

(9)

Problem definition From Eq. 5, we observe that existing

approaches unfairly assume that all local features contribute

equally to the aggregation stage. As shown in Section IV,

it significantly degenerates the retrieval accuracy, especially

for lower quality JPEG queries. To address the problem, we

propose a selective aggregation that injects a weight term w(z)
associated with local features x into Eq. 5:

g(k) =
∑

x∈Xk

w(z)f(r(x)), (10)

where w(z) is defined over the detected keypoints z. In this

work, we model the term w(z) as a keypoint ranking function

based on likelihood ratio test, which determines whether the

corresponding local features x are involved in aggregation or

not.

B. Keypoint Ranking for Selective Aggregation

From the matching point of view (see Fig. 2), informative

local features tend to be associated with true positive match

keypoints between images. Thus, to fulfill the selective ag-

gregation of local features, we propose to learn w(z) from

the perspective of patch-level keypoint matching. In particular,

we employ likelihood ratio test to accomplish the selection of

local features for subsequent aggregation [18]:

w(z) =
p(z|H0)

p(z|H1)
, (11)
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Fig. 3. The extraction pipeline of locally aggregated compact descriptors.

where hypothesis H0 and H1 represent whether keypoint z

would be a correct match or not, respectively. p(z|Hi), i = 0, 1
is the probability density function for hypothesis Hi, also

referred to as the likelihood of the hypothesis Hi given a

keypoint sample z. The likelihood functions can be learned

from match and non-match keypoint pairs, using the key-

points’ characteristics z (e.g., scale, orientation, etc). During

a test, we compute the values of p(z|H0) and p(z|H1) for

a given keypoint z, and predict the likelihood ratio of z

being correctly matched or not using Eq. 11. We note that

w(z) → ∞ if p(z|H0) → 1 and p(z|H1) → 0, which is the

required objective.

In statistics, the hypothesis test has been widely applied

to test if a certain statistical model fits the samples [23].

In this wok, we first train a universal model p(z|λH1
) with

parameters λH1
for hypothesis H1 over the entire keypoint set

BH1
detected from training images. Rather than independently

learning the model p(z|λH0
) for hypothesis H0, we adopt

Bayesian adaptation to derive λH0
smoothly by updating the

well-trained parameters λH1
of the universal model using

the match keypoint set BH0
generated from match image

pairs. Bayesian adaptation is a popular modeling approach in

speech and speaker recognition [23], which is able to harvest

sufficient prior knowledge about the distribution of keypoints

via the universal model.

Once the weight w(z) is computed for each keypoint de-

tected from an image, we propose to rank w(z) of the detected

keypoints in descending order, and then produce a binary

decision for each local feature x. Specifically, if w(z) is in

the top τ highest weight values, the corresponding descriptor

x is adopted in aggregation (i.e., w(z) = 1); otherwise, it is

discarded (i.e., w(z) = 0).

C. Parameter Estimation

Constructing the training keypoint set BH1
and BH0

. Let

Ω = {〈Iln, I
r
n〉}

N
n=1 denote N match image pairs, (Ze

n,X
e
n) =

{(zenm,xe
nm)|e ∈ {l, r},m = 1...Mn} denote a collection

of detected keypoints zenm and the corresponding descriptors

xe
nm extracted from image Ien. The entire keypoint set BH1

=
{zt|t = 1...B1, zt ∈ Ze

n}.

We employ a distance ratio test [12] to compute match key-

point pairs Dn = {〈xl
nd,x

r
nd〉|d = 1...Dn} from 〈Xl

n,X
r
n〉,

which may remove many false matches from background

clutter. Subsequently, a geometric consistency check like

RANSAC [22] is applied to divide Dn into inliers D̂n =
〈X̂l

n, X̂
r
n〉 = {〈x̂l

nd, x̂
r
nd〉|d = 1...D̂n} and outliers Dn \ D̂n.

The inliers D̂n are finally considered as true positive matches.

Finally, we construct the match keypoint set BH0
= {zt|t =

1...B0, zt ∈ Ẑe
n}, where Ẑe

n denotes the keypoints associated

with X̂e
n. Note that BH1

contains both match and non-match

keypoints, while BH0
is a subset of BH1

.

Estimating model p(z|λH1
). Given the training set BH1

,

we adopt a GMM model to learn the distribution of keypoint

features z as:

p(z|λH1
) =

C
∑

c=1

ω̃cpc(z), (12)

where λH1
= {ω̃c, µ̃c, σ̃

2
c}

C
c=1, C denotes the number of

Gaussian components. The covariance matrices are assumed

to be diagonal and the variance vector is denoted as σ̃2
c . We

learn the parameters λH1
by maximizing the likelihood of

BH1
.

Estimating model p(z|λH0
). Given the match keypoint set

BH0
and the universal model p(z|λH1

), we perform Bayesian

adaptation in twin-stage iteration. The first step is identical to

the expectation step of EM algorithm, which uses B0 keypoint

samples z from BH0
to calculate the sufficient statistics about

the GMM parameters of weight, mean and variance:

nc =

B0
∑

b=1

γb(c), (13)

Ec(z) =
1

nc

B0
∑

t=1

γ(c)z, (14)

Ec(z
2) =

1

nc

B0
∑

t=1

γ(c)z2, (15)

where γ(c) = ω̃cpc(z)∑
C
č=1

ω̃čpč(z)
denotes the soft assignment of

keypoint z to Gaussian c.
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The second step is to apply the above sufficient statistics

from BH0
to update the parameters {ω̃c, µ̃c, σ̃

2
c}. The adapted

parameters λH0
= {ω̂c, µ̂c, σ̂

2
c}

C
c=1 is derived as follows:

ω̂c = αw
c nc/B0 + (1− αw

c )ω̃c, (16)

µ̂c = αs
cEc(z) + (1− αs

c)µ̃c, (17)

σ̂2
c = αt

cEc(z
2) + (1− αt

c)(σ̃
2
c + µ̃2

c)− µ̂2
c , (18)

where αw
c , αs

c and αt
c are adaptation coefficients to control

the impact of universal model on parameters updating. For

example, when αs
c is large, the statistics Ec(z) from matched

keypoints tend to dominate in Eq. 17. In this work, we define

the coefficients αρ
c , ρ ∈ {w, s, t} as the ratios αρ

c = nc

nc+πρ ,

where πρ is a constant relevance factor for parameter ρ and

nc is defined in Eq. 13.

IV. EXPERIMENTAL RESULTS

A. Datasets and evaluation metrics

To evaluate the performance of the proposed approach, we

carry out retrieval experiments over public available datasets,

including heterogeneous categories of objects and scenes (see

Table I).

The Graphics dataset depicts 5 product categories including

CDs, DVDs, books, text documents and business cards. There

are 1,500 queries and 1,000 reference images. The queries

are captured by mobile phones under widely varying lighting

conditions with foreground or background clutter.

The Painting dataset contains 400 queries and 100 reference

images for museum paintings, including history, portraits,

landscapes and modern-art.

The Frame dataset is an image set of 500 video frames,

containing diverse content like movies, news reports and

sports. There are 400 queries taken by mobile phone from

laptop, computer and TV screens to include typical specular

distortions.

The Landmark dataset consists of 3,499 queries and 9,599

reference images collected from landmarks and buildings from

the world.

The UKbench dataset contains images of 2,550 objects.

Each one has 4 images taken from different viewpoints.

Query image compression. Each query image is com-

pressed by JPEG compression with quality factor Q =
{5, 10, 15, 20, 30, 50, 100}. The compression artifacts become

stronger as the image quality decreases. Color images are

converted to gray ones to save bits, as local features are

extracted from luminance component. For each compression

factor, 8,349 query images are generated.

For large scale experiments. We use a dataset FLICKR1M

containing 1 million distractor images randomly downloaded

from Flickr website. This image set is merged with the

reference images to evaluate the accuracy and efficiency over

a large-scale.

Evaluation measures. For all experiments we use the mean

Average Precision (mAP) to measure the search accuracy.

TABLE I
STATISTICS OF THE IMAGE DATASETS IN THE EXPERIMENTS.

Dataset # query images # database images

Graphics 1,500 1,000
Painting 400 100
Frame 400 100
Landmark 3,499 9,599
UKbench 2,550 7,650

FLICKR1M – 1,000,000

In Total 8,349 1,018,449

Graphics

Landmark

UKbench

Frame

Painting

Fig. 4. Sample images from different test datasets.

mAP is defined as follows:

mAP =
1

Nq

Nq
∑

i=1

(

∑N
r=1 P (r)

# relevant images
). (19)

where Nq is the number of queries; N the number of relevant

images for the ith query; P (r) is the precision at rank r.

We deploy both the SIFT feature extraction (see Fig. 1(a))

and JPEG compression scheme (see Fig. 1(b)) on a HTC

DESIRE G7 smart phone. This application is used to evaluate

the extraction time and memory cost on mobile client, as well

as the transmission delay of JPEG compressed query images

over a WLAN link.

B. Experiment setup

All the images are resized with reduced resolutions (max

side ≤ 640 pixels). SIFT features are extracted by the VLFeat

library. We employ independent image sets for all the training

stages. Specifically, the MIRFLICKR25000 dataset is used to

train all the vocabularies (i.e. GMM and k-means codebook).

To obtain training keypoint set BH1
and BH0

, we use the

match/non-match image pairs from Oxford building and Cal-

tech building datasets.

C. Baselines

(1) Bag-of-Words (BoW) [15]: We adopt hierarchical k-

means clustering to train a vocabulary tree with depth 5 and

branch factor 10, resulting in a 105 visual words. Inverted
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index file is build up to implement efficient search. (2) Resid-

ual Enhanced Visual Vector (REVV) [10]: Chen et al. applied

dimensionality reduction and sign binarization to compress the

VLAD representation. (3) Compressed Fisher vector (CFV)

[8]: The work in [8] employed sign binarization to quantize

raw FV signature vector, which outperformed the state-of-the-

art, such as Locality Sensitive Hashing and Spectral Hashing.

(4) Product Quantized SIFT (PQ-SIFT) [17]: PQ-SIFT is

the state-of-the-art compact local descriptor [17], following

the pipeline in Fig. 1(a) which extracts and quantizes raw

SIFT features by a product quantization technique [24]. (5)

Selective Aggregated BoW (BoW SA): the proposed selective

aggregation scheme combined with BoW. (6) Selective Aggre-

gated REVV (REVV SA): the proposed selective aggregation

scheme combined with REVV. (7) Selective Aggregated CFV

(CFV SA): the proposed selective aggregation scheme com-

bined with CFV.

D. Impact of parameter τ

We first study the impact of the number τ of aggregated

local features for CFV aggregation (Quality Q = 15). As

shown in Fig 5, the retrieval performance in terms of mAP

over all test datasets is consistently improved when τ increased

from 100 to 300, and the mAP rapidly decreases as the number

of selected features increased from 300 to CFV All (i.e.,

standard CFV). The optimal τ for all test datasets is about

300. For instance, on the Graphics dataset, τ = 300 yields

the best mAP 65.8%. To make clear the advantage of the

selective aggregation scheme, we produce the results of CFV

aggregation by randomly sampling 300 SIFT descriptors from

each query (see Fig 5). We can see that the mAP of CFV Rand

is even much worse than standard CFV, e.g. 24.3% vs. 42.4%

on Landmark dataset. This demonstrates the power of selective

aggregation as well.

E. Compression factor analysis

Fig. 6 shows the retrieval mAP vs. JPEG compression

factors over different datasets. Firstly, the selective aggregation

significantly outperforms the state-of-the-art over all datasets

at all compression factors. For Q = 20, BoW, REVV and

CFV yield mAP 40.1%, 24.1% and 36.0% on average over all

datasets, while the BoW SA, REVV SA and CFV SA have

achieved better mAP 59.1%, 62.8% and 64.2%, respectively.

This gain may be attributed to the fact that the SA scheme

discards less informative local features. Secondly, as the qual-

ity factor Q increases, all methods improve the performance

progressively. For example, mAP is improved from 65.4%

with Q = 20 to 72.7% with Q = 50 for CFV SA on Painting

dataset . More importantly, we observe that the SA scheme at

low quality (e.g., Q = 20) performs better than the baselines at

high quality (e.g., Q = 100). For instance, on Frame dataset,

BoW SA with Q = 20 outperforms BoW with Q = 100
(mAP 72.8% vs. 63.8%) by ∼10 times query size reduction

(∼16KB vs. ∼170KB). The results demonstrated that the

selective aggregation provides a trade-off between query size

and search accuracy. Fig. 7 shows several groups of visualized

0
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0.3

0.4

0.5

0.6

0.7

0.8

m
A
P

Number of SIFT

Graphics

Painting

Frame

Landmark

UKbench

Fig. 5. Influence of the number of selected SIFTs for CFV aggregation on
different datasets, combined with the 1 million distractor set FLICKR1M
(Quality Q = 15 for query images).

TABLE II
COMPARISON OF THE PROPOSED CFV SA (Q = 20) AND THE

STATE-OF-THE-ART PQ-SIFT, IN TERMS OF MAP (%) ON DIFFERENT

DATASETS, COMBINED WITH THE 1 MILLION DISTRACTOR SET

FLICKR1M.

Dataset CFV SA PQ-SIFT

Graphics 67.4 62.6
Painting 65.4 72.8

Frame 78.8 69.6
Landmark 51.3 42.8
UKbench 58.2 37.8

retrieval performances using CFV SA with comparisons to

CFV with Q = 50.

F. Comparison with the state-of-the-art

Table II compares the performance of CFV SA (Q = 20)

with PQ-SIFT [17][24] for comparable query size transmission

on mobile client (i.e., ∼16KB). The CFV SA obtains better

mAP than PQ-SIFT over all datasets except the Painting

dataset. For instance, CFV SA achieves a much better mAP

58.2% on UKbench, while PQ-SIFT reports 37.8%. This is

probably due to (1) PQ-SIFT causes considerable quantization

error of local features and degenerates the subsequent retrieval

performance; (2) the selective aggregation is able to reduce the

negative impact of lossy JPEG compression.

TABLE III
MEMORY AND COMPUTATION TIME COMPARISON BETWEEN JPEG

COMPRESSION AND SIFT EXTRACTION ON A HTC SMART PHONE BY

AVERAGING COSTS FROM 1000 VGA SIZE QUERY IMAGES.

Complexity JPEG compression SIFT

Memory ∼0 ∼18MB
Computation time (s) ∼0.1 ∼2.2
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Fig. 6. mAP vs. query image with different JPEG quality factors over various types of datasets, combined with the 1 million distractor set FLICKR1M.

TABLE IV
QUERY IMAGE SIZE VS. TRANSMISSION TIME (VIA WLAN) AT DIFFERENT

JPEG QUALITY FACTORS ON A HTC SMART PHONE BY AVERAGING

TRANSMISSION TIME FROM 1000 VGA SIZE QUERY IMAGES.

Quality Factor Image Size (KB) Upload Time (s)

5 6.65 0.27
10 9.96 0.47
15 12.91 0.50
20 15.53 0.55
30 20.49 0.80
50 28.31 0.97

100 169.36 4.58

G. Complexity analysis

Memory and computation time. Table III compares the

memory and computation (extraction) time between JPEG

compression and SIFT extraction on a smart phone. The

results show that directly sending a highly compressed JPEG

image provides prominent advantages in terms of memory

and computation time, compared to extracting local features

directly on the mobile phone.

Transmission time. Table IV reports the delivery time of

JPEG compressed query images with different quality factors

over a WLAN link. The time required to send the highest

quality query image (Q = 100) is several times longer than

the lower quality ones, which would cost serious energy

consumption. Fortunately, the selective aggregation supports

low quality query transmission, and battery saving may be

expected.

V. CONCLUSION

We have proposed discriminative locally aggregated com-

pact descriptors by informative local feature selection. The

selective aggregation is able to reduce the negative effect

of compression artifacts that appear in low quality JPEG

query images, which enables low latency query delivery as

well as power saving on the mobile client. In addition, the

selective aggregation scheme supports fast similarity matching

of descriptors based on Hamming distance and light storage

of large scale database images. Our approach has shown

promising retrieval performance over extensive benchmarks.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 175 APSIPA ASC 2015



Fig. 7. The retrieval performance of CFV SA in comparison to CFV [8] with JPEG query quality Q = 50. Each line corresponds to a query with top 10
dataset images returned. Left: CFV; Right: CFV SA. The selected local features are denoted in red in query image, the noisy local features are in yellow.
Green boxes indicate relevant image. The query images are randomly chosen from Graphics, Painting, Frame, Landmark and UKbench datasets.
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