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Abstract—This paper studies unsupervised acoustic units dis-
covery from unlabelled speech data. This task is usually ap-
proached by two steps, i.e., partitioning speech utterances into
segments and clustering these segments into subword categories.
In previous approaches, the clustering step usually assumes the
number of subword units are known beforehand, which is unrea-
sonable for zero-resource languages. Moreover, the previously-
used clustering methods are not able to detect non-spherical
clusters that are often present in real-world speech data. We
address the two problems by a brand new clustering method,
called density peak clustering (DPC), which is motivated by the
observation that cluster centers are characterized by a higher
density than their neighbors and by a relatively large distance
from other points of a higher density in the space. Experiments
on unsupervised acoustic units discovery demonstrate that our
DPC approach can easily discover the number of subword units
and it outperforms the recently proposed normalized cuts (NC)
clustering approaches [1].

I. INTRODUCTION

Unsupervised acoustic modeling has drawn much attention

recently with the tremendous growth of online speech data and

urgent needs for low-resource speech processing. Traditional

acoustic modeling has been using a highly supervised paradig-

m that needs a large set of labelled speech data and language-

specific linguistic knowledges about phoneme inventory and

pronunciation lexicon. However, labelled data and human

expertise are usually unavailable for low- or zero-resource

languages and even for some major languages, because data

annotation takes tremendous manual effort. With the exponen-

tial growth of cheap, online speech data, unsupervised speech

modeling with less human effort has drawn much research

interest lately. Some recent promising techniques have been

successfully applied to a variety of applications, including

speech recognition [2], spoken term detection [3] [4], topic

segmentation [5] and classification [6] [7] [8].

A fundamental issue for unsupervised acoustic modeling is

to discover the subwords, e.g., phoneme-like units, automati-

cally from speech in the given language. After that, each dis-

covered subword cluster can be modeled by a Hidden Markov

Model (HMM)[9] using traditional supervised means. Inspired

by an early acoustic segment modeling (ASM) [10] [11]

approach in isolated word recognition, unsupervised subword

unit discovery is usually approached by a segmentation-
clustering strategy. First, we segment the running speech in

an unsupervised manner, also known as phoneme/acoustic-

unit segmentation, which aims to discover boundaries between

phoneme-like units from a speech feature stream according

to changes in acoustic characteristics [12] [13]. Second, we

cluster the resulting segments of variable lengths into clusters,

each of which is considered as an acoustic unit. Subsequently,

for each speech utterance, cluster membership labels are used

as transcriptions for HMM-based acoustic modeling. With the

cluster labels as an initial bootstrap, the acoustic models can

be further refined via an iterative training process [14], in

which model parameter estimation and utterance decoding are

performed alternately. Segmentation, clustering and acoustic

modeling are often considered separately. It is also possible to

consider them simultaneously under a nonparametric Bayesian

approach [15].

Vector quantization (VQ) is a straightforward approach to

segment clustering, in which k-means clustering is performed

on the mean vector of the frame-level spectral feature in

each segment [10] [16] [17]. In order to exploit the trajectory

dynamics of speech, segmental GMMs (SGMMs) have been

introduced to represent segments with a polynomial function

and segment representations are fitted into a mixture model for

clustering purpose [7] [18]. GMM labeling is another approach

with two steps. First, a GMM is trained on the frame-level

features. Second, the GMM is used as a tokenizer to label a

segment.

Compared with spectral features, Gaussian posterior fea-

tures have shown robustness in speech recognition [19] and

spoken term detection [20]. Therefore, Wang et. al. have

proposed a clustering approach recently with segment-level

Gaussian posteriorgram representation [1] [21] [22]. First,

they generate segment posteriorgrams by averaging frame-

level Gaussian posterior probabilities in each segment. After

that, they construct a Gaussian-by-segment matrix by stack-

ing together the segment-level Gaussian posteriorgrams of

all utterances. Acoustic unit categories are then discovered

by clustering either on the Gaussian components (Gaussian

component clustering, GCC) or on the segments (segment

clustering, SC). Specifically, they use normalized cuts (NC)

as the clustering algorithm: First, a dimensionality reduction

algorithm, Laplacian eigenmaps [23] [24], is used to project

the big matrix to a low-dimensional matrix while preserving
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Fig. 1. Decision graph for segments in TIMIT training set.

its locality property; Second, k-means clustering is simply

performed on the matrix. The approach achieves state-of-the-

art performance that consistently outperforms VQ and GMM

labeling by a large margin.

Previous clustering methods used in acoustic units discovery

usually assume that the number of subword units are known

beforehand. For example, in Wang’s NC approach [1], the

number of subword units is set to the phoneme number of

the language under consideration. However, phoneme number

is usually not known for zero-resource languages or surprise

language scenarios. Our study in this paper shows that the

acoustic unit discovery performance is highly affected by the

pre-set number of clusters. On the other hand, k-means is

often used as the clustering algorithm in previous approaches,

e.g., VQ [16] [10] and NC [25] [26]. However in k-means,

because a data point is always assigned to the nearest center, it

is not able to detect nonspherical clusters (or arbitrary-shaped

clusters) that usually present in real-world speech data.

In this paper, we address the two problems by a new

clustering method called density peak clustering (DPC) [27].

Different from k-means that solely relies on distance, DPC is

based on the idea that cluster centers are characterized by a

higher density than their neighbors and by a relatively large

distance from points with higher densities. Thus clusters are

robustly recognized regardless of their shapes. Besides, this

clustering algorithm is able to automatically find the number

of clusters. Subword unit discovery experiments on TIMIT

demonstrate that our DPC approach apparently outperforms

VQ [10] [17] and NC [21].

II. CLUSTERING BY FINDING DENSITY PEAKS

In this paper, we use a recently proposed clustering method

called density peak clustering (DPC) [27] for unsupervised

acoustic units discovery. Different from commonly used k-

means [28] and k-medoids [29] which always assign a data

point to the nearest center, DPC performs clustering by finding

density peaks. The intuitive idea is that cluster centers always

have a higher density than their neighbors and cluster centers

are separated by a large distance. The clustering procedure

makes the number of clusters arising intuitively, outliers are

automatically spotted and excluded, and clusters are detected

regardless of their shape.
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Fig. 2. The value of γi = ρiδi in decreasing order

For each data point i to be clustered, we define ρi as its local

density and δi as its distance from points of higher density.

The former is defined as

ρi =
∑

j

χ(dij − dc) (1)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise. Here dij
is a distance metric between point i and j and dc is a cutoff

distance. We can clearly see that ρi is equal to the number of

points closer than dc to point i. δi is the minimum distance

between the point i and any other point with higher density:

δi = min
j:ρj>ρi

(dij). (2)

For the point with highest density, we take δi = maxj dij .

The points with local or global maxima in density have larger

δi than the nearest data points. Thus, cluster centers are the

points with high δ and relatively high ρ, this is the core idea

of this algorithm. The only parameter to be set is the cutoff

distance dc. It is proven that the clustering results are robust

with respect to the choice of dc for large data sets [27].

Fig. 1 illustrates the so-called decision graph generated by

DPC clustering on the segments. Each point in this figure

represents a segment that is represented by its segment-level

Gaussian posterior representation (see Section 3.1). All the

segments in the TIMIT training set are plotted in this figure

according to their ρ and δ calculated by Eq. (1) and Eq. (2).

The decision graph shows the presence of several distinct

density maxima while the exact number is not clear. A hint

for choosing the number of centers is provided by γi = ρiδi
sorted in decrease order. As shown in Fig. 2, γi starts to grow

drastically below data index 65. Therefore, 65 is selected as the

number of clusters. Back to Fig. 1, we can see that the cluster

centers (colored) stand out from the majority of the points

(gray). These centers are marked as big colored points that

have high δ and relatively high ρ. The number of the cluster

center (65) is near the number of phonemes (61) provided by

TIMIT.

Fig. 3 shows the flow chart of acoustic subword units

discovery. First, we partition each speech utterance into the

variable-length segments using an unsupervised segmentation

approach based on acoustic similarity [1]. After that, we

discover subword unit categories by clustering.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 179 APSIPA ASC 2015



Fig. 3. Flowchart of acoustic subword units discovery.

With the cluster centers, each remaining point is simply

assigned to the same cluster as its nearest neighbor of higher

density. In contrast with other clustering algorithms (e.g. k-

means) in which an objective function is optimized iteratively,

the cluster assignment is performed in a single step. Thus it

is faster and more efficient than other algorithms.

III. ACOUSTIC SUBWORD UNITS DISCOVERY

A. Segment-level Feature Representation

Before clustering, we need to represent a segment with a

segment-level feature representation. A straightforward way

is to average the frame-level MFCC vector and result in

a mean MFCC representation for each segment. However,

GMM posterior is a more robust representation of speech

[19] [20]. Suppose a speech utterance is denoted by O =
[o1,o2, · · · ,oT ], where ot is the MFCC vector of frame t. We

use {C1, C2, · · · , CM} to denote the M Gaussian components.

The posterior probability vector of frame t is represented by

qt = [p(C1|ot), p(C2|ot), · · · , p(CM |ot)]
T . (3)

Hence the Gaussian posteriorgram of utterance O is defined

as

Q = [q1,q2, · · · ,qT ]. (4)

The posterior representation for a segment is to simply average

the frame-level posterior vectors within the span of each

segment, and the segment-level Gaussian posteirorgram of

utterance O is

Q̄ = [q̄1, q̄2, · · · , q̄K ], (5)

where K is the number of the segments in the utterance.

Fig. 4 shows the segmental-level Gaussian posteriorgram of a

speech utterance in the TIMIT training set.

By stacking the segment-level Gaussian posterior represen-

tation of all the utterances in a speech dataset, we obtain a

Gaussian-by-segment matrix with size of M×N , where M is
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Fig. 4. Segmental-level Gaussian posteriorgram with 128 Gaussian compo-
nents for an utterance in TIMIT. x-axis: index of segments, y-axis: index
of Gaussian components. Darker color means higher Gaussian posterior
probability.

Algorithm 1 DPC-GCC
Input: Gaussian-by-segment Matrix X
Output: R GMM, cluster membership assigned to each segment
1: Calculate inner-product similarity matrix: W = 1

M
XXT

2: Calculate the normalized Laplacian matrix: L = D− 1
2 WD− 1

2 ,
D is the diagonal matrix with elements Dii =

∑
j Wij

3: Derive matrix U = [u1,u2, · · · ,uJ ] that contains the eigenvectors
corresponding to the J largest eigenvalues of L

4: Normalize row vectors of U to have unit L2-norm
5: Perform DPC clustering on the M row vectors of U and get the cluster

membership, cluster number is discovered
6: Form a new GMM for each cluster by assigning equal weights to the

corresponding Gaussian components
7: Label each segment with the index of the GMM that scores the highest

on it

number of Gaussian mixtures and N is the number of segments

in the whole dataset.
B. Clustering

Given the Guassian-by-segment matrix, we can perform

clustering either on the row vectors (Gaussian components)

or on the column vectors (segments), which lead to Gaussian

component clustering (GCC) and segment clustering (SC)

respectively. As discussed in [21], the two types of clustering

have duality and they both lead to reasonable acoustic unit

categories. However, the original Guassian-by-segment matrix

is too large. we need to project this matrix to a reasonable

size by a dimensionality reduction algorithm. In [1], Laplacian

eignmaps is used to this purpose. The flowchart of clustering

is illustrated in Fig. 3.
1) Gaussian Component Clustering by DPC: In [1], the

NC-GCC clustering is divided into two consecutive steps: cal-

culation of the Laplacian eigenvectors and k-means clustering.

In this paper, we substitute k-means with DPC in the second

step. The DPC-GCC approach is shown in Algorithm 1. The

steps are similar to those in NC-GCC but the cluster number

does not need to be set because DPC can automatically

discover it. Given the Gaussian-by-segment matrix X, we first

form a similarity matrix W using the inner product criterion.

Then we compute the normalized Laplacian matrix L and

derive the J eigenvectors with J largest eigenvalues. After

that, DPC is applied to row vectors of U. As a result of the

clustering, a set of new GMMs are generated and used for

segment labeling.
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TABLE I
CLUSTERING PERFORMANCE (NMI) OF DIFFERENT GCC APPROACHES.

Number of Gaussians: M 128 256 512 768 1024 2048 3072 4096
NC-GCC [1] 0.299 0.305 0.313 0.328 0.336 0.342 0.347 0.348
DPC-GCC 0.303 0.311 0.318 0.329 0.340 0.352 0.359 0.361

Algorithm 2 DPC-SC

Input: Gaussian-by-segment Matrix X
Output: Cluster membership assigned to each segment
1: Calculate vector d = XT (X1), where 1 is the unit vector. Let D be

the diagonal matrix with d on its diagonal position

2: Transform X to X̃ = XD− 1
2

3: Calculate similarity matrix of row vectors: W̃ = X̃X̃
T

4: Derive matrix Ũ = [ũ1, ũ2, · · · , ũJ ] that contains the eigenvectors

corresponding to the J largest eigenvalues of W̃
5: Comput U = X̃T Ũ
6: Normalize row vectors of U to have unit L2-norm
7: Perform DPC clustering on the N row vectors of U and get the cluster

memberships of the segments, cluster number is discovered

2) Segment Clustering by DPC: Similarly, clustering can

be performed on the column vectors, resulting in segment

clustering (SC). The clustering procedure is summarized in

Algorithm 2. The number of segments N can be quite large

in practice and directly computing segment similarity matrix is

difficult because of the huge memory cost. Again, as suggested

in [21], we derive the eigenvector from matrix Ũ in step 4 of

Algorithm 2 avoiding directly computing Laplace matrix L.

It has been proven that U consists of the J eigenvectors of

L = D− 1
2WD− 1

2 . Refer to [23] for more details.

IV. EXPERIMENTS

A. Experimental Setup

We carried out experiments on the training part of the

TIMIT corpus [30] that contains a total of 4620 sentences from

462 speakers. The 39-D MFCC vectors were post-processed

by mean and variance normalization (MVN) and vocal tract

length normalization (VTLN). There are a large number of

silence segments in the corpus and they may bias the clustering

results. Thus we remove the silence segments according to the

manual transcripts provided by the corpus. We partitioned each

utterance into segments with variable-length using a simple

but effective method introduced in [21]. According to [27],

clustering results are robust with respect to the choice of dc
and one can choose it so that the average number of neighbors

is around 1% to 2% of the total number of points. We set this

percentage to 2% instead of directly setting the value of dc.

In Algorithm 1 and Algorithm 2, J determines the reduction

degree of the data and we set J to 70 empirically according

to [23]. The clustering performance was evaluated with refer-

ence to frame-level manual phoneme labels. A commonly used

metric for the clustering task, normalized mutual information

(NMI), was used as performance metric. A larger NMI value

indicates a better clustering result. We compared the proposed

DPC approach with the NC approach [1]. The number of

clusters was set to 61, i.e., the real phoneme number in the

TIMIT set, in the NC experiments. In the DPC experiments,

the distance metric d is cosine.

TABLE II
CLUSTERING PERFORMANCE OF DIFFERENT SC APPROACHES.

Approach NMI
VQ (MFCC) 0.317
DPC-SC (MFCC) 0.338
NC-SC [1] 0.351
DPC-SC 0.368
NC-SC (w/ Iterative Training) [1] 0.391
DPC-SC (w/ Iterative Training) 0.412

B. Results on GCC

Table I shows the clustering performances of different

GCC approaches. We tested different number of Gaussian

components (M from 128 to 4096) in the GMM posterior

feature representation. Firstly, we observe that the performance

improves with the increase of Gaussian components. Secondly,

the proposed DPC-GCC approach apparently outperforms the

NC-GCC approach at all numbers of Gaussian components

(the differences are significant at p < 0.05 [31]). With the

help of the Laplacian representation, our DPC approach can

achieve the best NMI of 0.361 (M=4096).

C. Results on SC

Segment clustering (SC) results are shown in Table II.

Here we show results on both MFCC and Gaussian posterior

representations, where M is set to 4096. We directly perform

clustering on MFCC-by-segment matrix for sanity check. As

expected, DPC-SC performs significantly better than VQ. This

indicates that density peak clustering outperforms k-means in

acoustic unit discovery. When Gaussian posterior is used as

segment representation, clustering performance is lifted to a

new level. Again, our DPC-SC approach clearly outperforms

the NC-SC approach (significant at p < 0.01). We also notice

that the DPC-SC approach has slightly better NMI (0.368) than

that of DPC-GCC (0.361). Finally when iterative training [14]

is used, the results are further improved and the DPC-SC

approach is still the better one with the highest NMI of 0.412.

Please also bear in mind, as compared with NC, the DPC

approach does not need the input of the cluster number.

30 40 50 60 70 80 90 100 110 120 130 140 150
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I

DPC-SC
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Fig. 5. The NMI of SC-NC when different cluster number is set. The NMI of
DPC-NC is also shown for comparison while cluster number is automatically
derived.
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Fig. 6. Confusion matrixes between standard phonemes and cluster indexes on TIMIT training set. The darkness is scaled to the value of the corresponding
element in the confusion matrix.

D. Analysis

In order to show how the number of clusters affects the

performance of NC-SC, we run experiments and draw Fig. 5.

We can see that when the true cluster number is set, the

performance is the best. However, if this number is shifted

away from the true value, NMI degrades dramatically. The

performance of NC-SC never reaches the level of DPC-SC that

automatically discover the number of clusters. Fig. 6 shows the

confusion matrixes between true phonemes and the subword

unit clusters discovered. We can observe a diagonal line in

each matrix, which means the discovered subword units have

clear correlations with phonemes. When we compare NC with

DPC, i.e., (a) vs. (b) and (c) vs. (d) in Fig. 6, we see more

salient diagonal lines in the confusion matrixes made by DPC.

This observation also confirms that DPC has better clustering

performance. However, in the nasal broad category (labeled

as nas in Fig. 6), significant inter-class confusion appears

between phonemes ng, n, en, eng, m and em. This means

these nasals are difficult to discriminate by current clustering

algorithms.

V. CONCLUSIONS AND FUTURE WORK

This paper investigated automatic subword units discovery

from speech in an unsupervised manner. Specifically, we

addressed two important problems that have been neglected by

previous approaches: the number of clusters has to be deter-

mined in advance and the clustering algorithm lacks of robust-

ness in detecting nonspherical clusters. These two problems

affect the practical use and robustness of unsupervised acoustic

unit discovery. In this paper, we alleviated the two problems

by a new clustering algorithm called density peak clustering

(DPC). Experiments show that our DPC approach can easily

discover the number of subword units and it outperforms the

recently proposed normalized cuts (NC) clustering approach

[1]. In future work, we plan to test our approach on more

challenging low-resource corpora and multilingual conditions.
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