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Abstract—In this paper, we propose a novel method for facial
parts detection based on Deformable Part Model (DPM). In DPM,
the parts are useful regions to detect the face and do not always
correspond to the facial parts such as eye, nose and mouth. We
model facial parts as a part filter and use annotation to training
the position and size. In addition, we discuss the algorithm to
deal with the variation of bounding box in the annotation. Our
experimental results show that the proposed algorithm improves
DPM for facial parts detection.

I. INTRODUCTION

It is thought that human internal state can be estimated from
eye gaze and facial expression. Currently, eye gaze estimation
using iris region[1] and micro-expression recognition using
strain pattern of facial regions[2] are proposed. In these
approaches, it is necessary to detect facial parts such as eye,
nose and mouth. The purpose of this paper is to detect facial
parts accurately.

We use Deformable Part Model (DPM)[3] to detect facial
parts by bounding box. The conventional DPM consists of
a root filter that approximately covers an holistic object, part
filters that cover smaller parts of the object, and spatial models
that define a set of allowed placements of the parts relative
to the root. By applying DPM to face, it can detect a face
and the parts. However, the parts indicate useful regions to
detect the face and do not always correspond to the facial
parts such as eye, nose and mouth. To solve the problem and
accurately detect the facial parts, we propose a new method
to constrain part filters to locate at the position where human
annotated on training images. Owing to the annotation, a face
and the facial parts are detected accurately at the same time.
As the annotation we use features such as size and location
of facial parts and investigate the effective algorithm for facial
parts detection in this paper. Fig. 1 shows the examples of our
method: (a) represents a training image and bounding boxes
used for annotation given by human, (b) represents part filters
of DPM trained by our method and (c) represents a result of
face and facial parts detection.

In addition, there is a case where bounding boxes used
for annotation vary on the training images. This causes the
problem that the part filters are not well decided. Hence, we
discuss the algorithm to deal with the variation of bounding
box used for annotation.

Fig. 1. Examples of our facial parts detection. (a) represents one of training
images and bounding boxes used for annotation given by human. (b) represents
part filters of DPM trained by proposed method. (c) represents a result of face
and facial parts detection using DPM traind by proposed method.

II. RELATED WORK

Many conventional methods in facial parts detection detect
a whole face at first and then facial parts are detected in the
detected facial region[4], [5]. Therefore, the precision of face
detection influences the precision of facial parts detection. In
addition, the conventional methods require the construction of
a classifier for each facial part. On the other hand, our method
can detect a face and facial parts at the same time and is not
necessary to construct a classifier for each facial part. Similar
to our work, part annotation is used in the works which deal
with parts[6], [7], [8], [9], [10], [11]. The works [6], [7], [8]
estimate human pose, [9] classifies dog and cat. Similar to our
work, [10], [11] use part-based model and features such as size
and location. [10] uses minimum spanning tree model. [11]
uses a fully connected model where the nodes represent the
holistic object and parts. In contrast, we use a star model. [10],
[11] don’t investigate effective algorithm in parts detection and
influence of the variation of bounding box used for annotation,
but we do.

III. DPM FOR DETECTION OF FACIAL PARTS

The detection score of DPM is defined as follows.

score =
n∑

i=0

Fi · ϕ(H, pi)−
n∑

i=1

di · ϕd(dxi, dyi) + b (1)

where F0 is a root filter, Fi is a filter for the i-th part,
pi = (xi, yi, li) specifies the feature pyramid level and
position of i-th part, ϕ(H, pi) denotes the feature vector in
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Fig. 2. Overview of the proposed method

the subwindow of feature pyramid H with top-left corner
at pi, di is a four-dimensional vector defining deformation
cost, vi is a two-dimensional vector specifying an anchor
position for part i relative to the root position, (dxi, dyi) =
(xi, yi)−(2(x0, y0)+vi) gives the displacement of the i-th part
relative to its anchor position, ϕd(dx, dy) = (dx, dy, dx2, dy2)
are deformation costs and b is bias term.

An overview of our approach is shown in Fig. 2. Dataset
of DPM consists of images and annotations specifying a
bounding box and a class label for holistic face. In this paper,
we additionally annotate on facial parts of left eye, right eye,
nose and mouth by using the size and location of the parts.

In DPM v5[12], the number of part filters is 8 and each
part filter size is fixed (6× 6). In addition, the part filters are
placed to cover high-energy regions of root filter.

To detect the facial parts by part filters using annotation in
our method, the parts annotation is read at first. The number of
the part filters is set to the number of classes used for the parts
annotation in our method. Let N be the number of training
samples, (Sx

i,class, Sy
i,class) and (P x

i,class, P y
i,class) be the size

of bounding box and top-left corner position of the bounding
box annotated for class in i-th sample. We show a method to
utilize the features (size, location) below. There are one rule
in using size and two rules in using location.

• Size Rule
Size of each part filter (sizexpart, sizeypart) given part ∈

{left eye, right eye, nose,mouth} constrained to the size of
annotated facial parts as follows.

sizexpart = ⌈ 1

N

N∑
i=1

Sx
i,part

Sx
i,face

× 2× rootsizex⌉ (2)

sizeypart = ⌈ 1

N

N∑
i=1

Sy
i,part

Sy
i,face

× 2× rootsizey⌉ (3)

where the (rootsizex, rootsizey) is the size of root filter. We
call this size rule.

• Limitation Rule
Top-left corner position of one part filter relative to

top-left corner position of a root filter is called an-
chor position. Anchor position of each part filter is set
to cover high-energy regions within from (P minx

part,
P miny

part) to (P maxx
part, P maxy

part) of a root fil-
ter given part ∈ {left eye, right eye, nose,mouth}.
P minx

part, P miny
part, P maxx

part and P maxy
part are de-

fined as follows,

P minx
part = min

i∈{1..N}
⌊
P x
i,part − P x

i,face

Sx
i,face

×2×rootsizex+0.5⌋

(4)

P miny
part = min

i∈{1..N}
⌊
P y
i,part − P y

i,face

Sy
i,face

×2×rootsizey+0.5⌋

(5)

P maxx
part = max

i∈{1..N}
⌊
P x
i,part − P x

i,face

Sx
i,face

×2×rootsizex+0.5⌋

(6)

P maxy
part = max

i∈{1..N}
⌊
P y
i,part − P y

i,face

Sy
i,face

×2×rootsizey+0.5⌋

(7)
We call this limitation rule.

• Average Position Rule
Anchor position of each part filter (P ancxpart, P ancypart)

is constrained to the averaged position of top-left corner
position annotated on each facial part relative to that of the face
region, given part ∈ {left eye, right eye, nose,mouth}. The
P ancxpart and P ancypart are defined as follows.

P ancxpart = ⌊ 1

N

N∑
i=1

P x
i,part − P x

i,face

Sx
i,face

×2×rootsizex+0.5⌋

(8)

P ancypart = ⌊ 1

N

N∑
i=1

P y
i,part − P y

i,face

Sy
i,face

×2×rootsizey+0.5⌋

(9)
We call this average position rule.

IV. EXPERIMENTS

The Extended Cohn-Kanade Dataset(CK+)[13] was used for
evaluation. CK+ contains 593 sequences from 123 subjects
who are 18 to 50 years old. Subjects were instructed to
perform a series of 23 facial displays, six of which were
based on description of prototypic emotions. For evaluation,
we used 137 images of 6 subjects as the training data to
train model and 200 images of 20 subjects as test data. The
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Fig. 3. DPMs trained by each method. In each model, top is a original model and bottom is the flipped model. The model consists of a root filter(left), part
filters(center) and spatial models(right). In part filters, Yellow area is left eye, red area is right eye, blue area is nose and green area is mouth.

subjects are not duplicated in the training images and the
test images. The bounding boxes of each facial part were
given by the one person. Evaluation criterion is based on
PASCAL Visual Object Classes Challenge[14]. In detection
task, IoU (Intersection over Union) is calculated for each
predicted bounding box Bp as follows.

IoU(Bp, Bgt) =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(10)

where Bgt is a ground truth bounding box. A correct detec-
tion is decided when IoU exceeds overlap threshold tov. As
tov are used 0.5, 0.6, 0.7, 0.8, 0.9 in our face detection, and
0.3, 0.4, 0.5 in our facial parts detection. Average Precision
(AP) is used as the evaluation of the detections.

We compared 6 methods to show the effectiveness of the
rules used in facial parts detection. They are (i) DPM v5 and
proposed methods using (ii) size rule, (iii) limitation rule,
(iv) average position rule, (v) size rule + limitation rule and
(vi) size rule + average position rule. Part filters of (ii)-(vi)
correspond to each facial part. For (i), we evaluated AP of
facial parts detection by computing the detected results with
the annotation. As a result, 4 part filters corresponding to each
facial part of left eye, right eye, nose and mouth were selected
from 8 part filters. The constructed DPMs (containing flipped
horizontal model) trained by each method are shown Fig. 3(a)-
(f). In these figures, the part filters corresponding to left eye,
right eye, nose and mouth are shown in yellow, red, blue and
green respectively.

Result of facial parts detection by each method is shown in
Table I. Then, mean of mean AP by each method is shown
in Table II. Method (vii) will be described later. As for face
detection, mean APs (%) are (i) 69.6, (ii) 67.2, (iii) 69.1, (iv)
67.9, (v) 64.2, (vi) 67.3. There are no significant difference
between (i) DPM v5 and (ii)-(vi) proposed methods. The
detection time is shown in Table III using Intel(R) Core(TM)
i7-2600 CPU @ 3.40GHz.

V. DISCUSSION

Method (ii) using size rule only shows the worst result.
Therefore, importance of limitation rule and average position
rule were verified to be effective. Results by method (v)(vi)
using size rule plus limitation rule and average position rule
are better than method (iii)(iv) using limitation rule only and
average position rule only. Thus, size rule is verified to be
effective. By comparison of (v) and (vi), average position
rule is more important than limitation rule. Furthermore, since
(vi) shows the best among the comparative methods, the
effectiveness of combining size rule and average position rule
in facial parts detection is verified to be effective.

Results of right eye and mouth detection are relatively
worse. We assume this problem is due to the variation of
the bounding boxes in the annotations on training images.
To solve this problem, we propose to change the average
position rule to calculate the difference between center of
gravity positions of bounding box of face and each facial part,
instead of calculating the difference between top-left corner
positions of them.

Anchor position of each part filter (P ancxpart, P ancypart)
given part ∈ {left eye, right eye, nose,mouth} is defined
as follows,

P ancxpart = ⌊ 1

N

N∑
i=1

Pµx

i,part − Pµx

i,face

Sx
i,face

× 2× rootsizex

+rootsizex −
sizexpart

2
+ 0.5⌋

(11)

P ancypart = ⌊ 1

N

N∑
i=1

P
µy

i,part − P
µy

i,face

Sy
i,face

× 2× rootsizey

+rootsizey −
sizeypart

2
+ 0.5⌋

(12)
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TABLE I
AVERAGE PRECISION (%) OF FACIAL PARTS DETECTION

left eye right eye nose mouth
overlap threshold tov overlap threshold tov overlap threshold tov overlap threshold tov
0.3 0.4 0.5 mean AP 0.3 0.4 0.5 mean AP 0.3 0.4 0.5 mean AP 0.3 0.4 0.5 mean AP

(i) 68.6 18.3 0.5 29.1 33.2 6.6 0.2 13.3 98.3 98.3 97.8 98.1 88.5 35.9 0.5 41.6
(ii) 0.3 0.1 0 0.1 0.6 0.4 0 0.3 0.1 0 0 0.3 0.2 0.1 0 0.1
(iii) 40.8 5.8 0.7 15.8 7.3 0.7 0.2 2.7 96.1 90.6 58.3 81.7 84.2 28.9 0.1 37.7
(iv) 25 4 0.2 9.7 6.4 2.1 0.2 2.9 96.7 96.7 96.7 96.7 83.9 30.1 0.4 38.1
(v) 60 38 19.8 39.2 8 6.5 3.7 6.1 96.6 96.6 90.3 94.5 51.9 9.2 0.8 20.6
(vi) 96.7 84.4 57.7 79.6 96.7 64.3 21.4 60.8 96.7 96.7 88.2 93.9 92.9 84.3 58.7 78.6

(vii) 96.1 85.9 61 81 88.7 60.2 36.4 61.8 96.1 96.1 89.4 93.9 96.1 84.1 77 85.7

TABLE II
MEAN OF MEAN AP (%) IN FACIAL PARTS DETECTION

(i) (ii) (iii) (iv) (v) (vi) (vii)
45.6 0.15 34.5 36.9 40.1 78.2 80.6

where Pµx

i,face = P x
i,face + rootsizex/2, Pµy

i,face = P y
i,face +

rootsizey/2, Pµx

i,part = P x
i,part + sizexpart/2, P

µy

i,part =
P y
i,part+sizepart

y/2. (vii) is a method using this rule and size
rule. DPM trained by (vii) is shown in Fig. 3(g). The detection
example of (vii) is shown in Fig. 1(c).

There are annotation with tight bounding box as well as
loose bounding box in surrounding one object in training
image. Therefore, it is assumed that center of gravity position
has smaller variation than top-left corner position.

The problem of annotated bounding box variation is not
only in the case of face and facial parts but also in others. In
particular, the variation causes negative impact on calculating
the relations between two objects as is in this case. we did
annotation by one person in this experiment. In the case of
annotation by many persons, the variation will be larger. Thus,
it is important to investigate the method to reduce the variation.

Furthermore, in method (vii), we also evaluate small, oc-
cluded and motion blurred faces because assuming real envi-
ronments. Small image is half size (320 × 245 pixels) of the
original image (640× 490 pixels). Size of occluded region is
10%, 20% and 30% of face size and number of the regions is 1
or 2. Occluded regions are chosen by random from four facial
parts. Number of occluded images is 1200. As for motion blur,
the length of camera motion is 20 pixels and the angle θ is
0◦, 45◦, 90◦ and 135◦. Number of motion blurred images is
800.

Results of facial parts detection (mean of mean AP (%)) are
82.6(small), 40.8(occluded) and 74.9(motion blurred).

VI. CONCLUSION

In this paper, we proposed a new method to detect accu-
rately facial parts such as eye, nose and mouth using DPM.
In order to constrain part filters to locate at the position
where human annotated on training images, we investigated
the effective algorithm using size and location of bounding
box used in the annotation. In addition, we discussed the
algorithm to deal with the variation of bounding box in the
annotation. As a result, the proposed algorithm was verified to
be effective in facial parts detection, which can constrain the

TABLE III
DETECTION TIME (SECOND) PER IMAGE

(i) (ii) (iii) (iv) (v) (vi) (vii)
1.569 2.891 2.924 2.918 2.907 2.902 2.909

size of part filter by the size of annotated facial parts as well as
the anchor position of each part filter by the averaged position
of annotated facial parts position. To reduce the variation of
bounding box used in the proposed annotation, the proposed
algorithm was verified to be effective, which can decide the
anchor position of each part filter by calculating the difference
between center of gravity positions of bounding box of face
and each facial part.
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