
Evaluation of Compressive Sensing encoding on

AR Drone

Karan Shetti, Asha Vijayakumar

Airbus Group Innovations, Singapore

Email: karan-rajendra.shetti@airbus.com

Abstract—Micro-flying robots such as quadcopters or drones
are being used extensively in many civilian applications. They
are generally integrated with different sensors and are designed
to perform tasks both autonomously as well as with manual
feedback. These drones typically transmit data periodically either
to a base station or to each other if deployed in a swarm. As the
number of sensors on-board increases, communication bandwidth
becomes a critical aspect for these drones. While there are
multiple approaches to improve bandwidth, they typically involve
modification of the communication infrastructure. In this paper,
we propose a unique method to reduce the data from a typical
sensor like an on-board camera using Compressive Sensing (CS)
technique. Our method does not require any changes to the
communication infrastructure used (WLAN 802.11a) and can
be possibly extended to other communication links. We have
implemented the CS based encoder on-board the A.R. Drone
and conducted various experiments to measure execution time
of the processing and quality of the data transmitted to validate
our approach.

I. INTRODUCTION

Design and development of micro-flying robots, also termed

drones or UAVs, is an active topic of research. Different

applications of such autonomous control for detection and

tracking of objects [1], as stations for creating multi-hop

wireless networks [2] are some of the topics being investigated.

Some commercial applications such as package delivery and

infrastructure inspection are also being developed [3]. One

of the crucial aspect for the success of these applications on

drones would be the communication link. Drone swarms as

well as single autonomous drones need to continuously send

and receive data either to each other or communicate with a

base station.

Most drones typically use commercial off-the-shelf wire-

less devices such as WLAN operating in 802.11a mode for

communication through an ad-hoc network. This method has

gained prominence as it is economical and well supported in

the embedded systems domain. However, such drone networks

are challenged by various factors which traditional networking

approaches have not been designed for. While they perform

well in an indoor environment, they are affected by changes

in signal propagation, link quality, PHY rate selection and an-

tenna orientation in 3D space [4] in the outdoor environment.

Asadpour et al. [4] also show that automatic rate adaptation

of standard 802.11 chip-sets cannot cope with high mobility

of drones and needs to be adapted for the same.

To tackle these problems, research to improve antenna and

protocol designs is being undertaken to increase throughput

and reduce delays. Sharawi et al. [5] propose using 3D printed

array of antennas to improve throughput. Their approach does

not change the aerodynamics of the UAV as the antennas are

embedded on the wings. While this is a good approach, it

requires additional hardware and may not be suitable for use

in cheaper quadcopter based drones.

In this paper, we propose an alternate solution that sup-

ports effective transmission of the data through the available

bandwidth. The focus is on reducing the data that needs

to be transmitted from the drone using compressive sensing

techniques. Such an implementation allows the use of exist-

ing infrastructure and protocols without comprising on the

quality of the data. We illustrate how CS based encoding of

images can be implemented on an embedded platform like the

drone’s on-board computer (OBC) by sampling them below

the Nyquist rate.

A. Compressive Sensing

The theory of CS enables the acquisition of a few random

measurements of the signal thereby acquiring the signal in

the compressed form combining the stages of signal acqui-

sition and compression[6]. A prerequisite for the successful

reconstruction of signals from few non-adaptive random mea-

surements is that the signal is sparse in some basis ψ [6],

[7],

x = ψs (1)

where ψ is a N×N basis matrix and s is a sparse vector. Most

of the real world signals are known to be sparse as in (1). A

random M × N projection matrix, φ, is used to capture the

input vector measurements (y), where y = φψs. The number of

measurements M to be captured depends on the sparsity K of

the signal. A CS based systems takes the load off the encoder

by passing it on to the decoder which is ideal for applications

on drones. The two important design tools for a CS system are

the sensing matrices φ to randomly sample the measurement

and the optimization algorithm to reconstruct the sparse signals

[6], [7]. The sensing matrices are basically projection matrices

designed to conform to two important properties. Firstly,

the matrix φ should preserve the metric when the vectors

are projected from a higher dimensional space to a lower

dimensional space. This property is referred to as restricted

isometry property (RIP). The second property is that the

sensing matrix should be incoherent to the basis in which

the signal is sparse. The sparse signal can be recovered using

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 204 APSIPA ASC 2015



convex optimization like, ŝ = argmin‖s‖1 such that χs = y

where χ = φψ.

II. IMPLEMENTATION

A. System Design

The system design consists of an encoder and a decoder.

The on-board encoder receives data from the HD video camera

and converts the data to the compressed sensed domain using a

structured random matrix[8]. The data captured is transmitted

as UDP packets to the ground station where the decoder

reconstructs the data using an optimization algorithm. There

are two major challenges for the design of a CS based system

for real time applications (1) Design and implementation of a

sensing matrix and (2) A fast reconstruction algorithm. In this

work we consider a sparse reconstruction method by separable

approximation (SpaRSA) [9] for reconstruction of compressed

sensed images obtained from the drones. In [9] the authors

have shown that SpaRSA is much faster and is suitable for

solving large scale optimization problems. The compressed

sensed data on drones is transmitted through the wireless

network in two different ways - frame wise transmission and

selective frame transmission as explained in the subsequent

sections.

1) Frame wise transmission: The Parrot AR.Drone 2.0 is

based on a classic quadrotor design. It consists of a Parrot

P6 processor (32bits ARM9-core, running at 468 MHz) and

a front camera capable of HD recording and VGA resolution

transmission (640 × 480) at a frame-rate of 15 frames per

second [10]. A Linux based real-time operating system with

Busybox is used and all processing is done on-board by the

propriety software installed. To maximize the quality of the

view, the front camera uses a 93 degrees wide-angle diagonal

lens. The AR Drone camera produces a raw HD image of size

1280×720, these frames are then down-sampled to 256×256
image to fit the data into a single UDP packet for transmission

to the ground station. The total number of samples N in

this case is 65536 and only M samples of each frame are

transmitted using the UDP protocol. Each of the transmitted

frames are reconstructed at the decoder using SpaRSA.

2) Selective frame transmission: In many field missions the

changes between successive frames, in the captured video, is

not always significant. In [11], the authors have shown that

it is possible to do signal detection and estimation from the

few random measurements that are captured without having to

reconstruct the signal. Such methods facilitate quick on board

decisions. In this work we adopt a simple method to mark

a sudden change in the successive frames in the compressed

sensed domain. A difference of each incoming frame with

the previous frame is taken. The variance of the compressed

sensed differential frame is measured against an empirically

derived threshold. If the variance of the compressed sensed

differential frame is above the marked threshold then the

compressed sensed samples of that corresponding frame is

transmitted. A selective frame transmission not only helps in

reducing the data as shown in Section III-C but also helps us

to evaluate the processing capability on board the Unmanned

Aerial vehicle (UAV).

B. Embedded Implementation of the sensing matrix

The primary challenge of the design of a CS based system

is to design a sensing matrix that supports fast computation,

optimal performance and is also hardware friendly. In [8]

authors have shown that a structured random matrix (SRM)

satisfies the required characteristics of a sensing matrix mak-

ing it a preferred choice for real time compressive sensing

applications. In the SRM implemented in this paper we pre-

randomizes the input by flipping the sample signs and then

transform it using a Fast Fourier Transform (FFT) before

picking up the M random measurements. The selection vector

to pick up the random measurements is stored as a lookup table

in files. The structured random matrix was implemented on

an embedded platform. The Cooley-Tukey FFT algorithm was

used in developing the hand written code for FFT with twiddle

factors stored as look-up table to improve the execution time.

C. Implementation on AR Drone 2.0

The Parrot AR Drone provides only the basic accessibility to

the drone hardware and cameras. While the software running

on-board is not accessible, Parrot provides an SDK to commu-

nicate with drone, however this does not allow any processing

on-board. Since our objective is to illustrate the on-board

embedded implementation of a CS encoder and evaluate the

performance of processing in the compressed sensed domain,

we completely halt the program running the drone firmware to

avoid overheads during our experiments. While this disabled

the flight control and navigation, it allowed us access to all the

devices as any Linux embedded system. The front camera was

setup to tap the raw HD data using the Video4Linux library

thereby resulting in more flexibility to implement the encoder

onboard the drone hardware. In order to achieve a higher frame

rate, we ported the FFTW library [12], [13] on the ARM

processor. FFTW is a C subroutine library for computing the

discrete Fourier transform (DFT) in one or more dimensions,

of arbitrary input size, and of both real and complex data. This

library had to be recompiled to work in the ARM environment

and by enabling the NEON instructions, which are similar

to Intel’s SSE, there was an significant improvement in the

execution time as shown in Section III.

III. RESULTS

A. Experimental Setup

The implementation of the encoder was done on the ARM

processors as mentioned in Section II. Various experiments

were conducted which measured the execution time and the

signal to noise ratio (SNR) for different sampling ratios M/N .

The decoder was implemented on a Intel Core 2 Duo PC as

a Matlab application. The encoder used the SpaRSA library

to reconstruct the transmitted image. The plots contains the

average value of the results tabulated over 10 iterations for

both execution time and SNR experiments.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 205 APSIPA ASC 2015



0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0

100

200

300

400

500

600

700

800

M/N

E
x
ec
u
ti
o
n
ti
m
e
[m

s]

Execution Time (with firmware)

Execution Time (without firmware)

Execution Time (with FFTW, without firmware)

10
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

20

25

30

35

40

45

50

M/N

S
ig
n
a
l
to

N
o
is
e
R
a
ti
o
(S
N
R
)
[d
B
]

Signal to Noise Ratio

1

Fig. 1. Execution time on AR Drone and Reconstruction SNR

B. Frame wise transmission

Figure 1 shows the execution time of frame wise trans-

mission implemented under three different cases namely, with

propriety firmware, without firmware and finally using the

FFTW library. Case 1 and 2 simulate the performance of

the application on-board a fully operational drone and a

generic ARM processor respectively. The drone firmware uses

the CPU quite extensively and shows a significant overhead

(≈ 300ms) across all sampling ratios. On average without the

firmware overhead, we achieve ≈ 400ms execution time using

the hand written Cooley-Tukey algorithm for FFT. However,

this is still not optimal as we can only achieve 2 frames per sec

using this method. As shown in Figure 1 the FFTW library

provides a significant improvement over the former method

as it also uses the Neon instructions to further accelerate the

program. It can also be observed from Fig. 1 that the overall

execution time does not change significantly for different

sampling ratios allowing the choice of the sampling ratio to

be made based on the SNR requirements.

The SNR is defined as 20 log10(‖x‖2/‖x − x̂‖2) where the

original image, x is from the drone and x̂ is the reconstructed

image. When the image was reconstructed using only 10% of

the data, we can observe that the SNR was poor, whereas the

SNR improves with an increase in the sampling ratio reaching

a peak of 49.5 dB when 75% of the samples were used. The

variation of the SNR over different sampling ratios is shown

in Figure 1.

C. Selective frame transmission

Three scenarios were chosen which were used for testing

the effectiveness of selective frame transmission. These are

namely

1) Frame [0-25]: Stationary drone with no movement

2) Frame [26-100]: Slight movement (hover mode)

3) Frame [101-200]: Rapid movement (flight mode)

As shown in Fig. 2, the binary result of scene(sampling ratio =

0.5) transmission under different modes is plotted against the

different frames used. We define keyframe as the frame where

significant changes are observed. The difference of each frame

with its previous frame is measured and the variance of the

compressed sensed differential frame is measured against a

threshold. In the first section, we can observe that no new

information was detected and hence only one keyframe was

transmitted. The number of keyframes increase as there is

more movement in the hover mode and flight mode as the

changes are more prominent. Overall when this method is

used, a total of 79 frames (1/25 is stationary, 38/75 in hover

and 40/100 in flight mode) out of 200 are sent, reducing the

data by 61%.

0 5

1
0

1
5

2
0

2
5

0

1

Frame no

S
ce
n
e
tr
a
n
sm

is
si
o
n

1

(a)Stationary mode

2
6

4
1

5
6

7
1

8
6

1
0
1

0

1

Frame no

S
ce
n
e
tr
a
n
sm

is
si
o
n

1

(b)Hover mode

1
0
1

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

0

1

Frame no

S
ce
n
e
tr
a
n
sm

is
si
o
n

1

(c)Flight mode

Fig. 2. Image transmission for different modes

Fig. 3 shows the comparison of SNR analysis of image

frames with and without using keyframes. Images that were

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 206 APSIPA ASC 2015



not transmitted were compared with their corresponding orig-

inal images to judge the accuracy of this approach. In this

graph, the blue stem shows the variation of SNR for the case

when the skipping of frames was not done and the red stem

shows the case of variation of SNR when only the keyframes

are used. While there is a drop in the SNR as expected, the

absolute value of the SNR is still quite high. However, in the

case of rapid motion, the selective transmission shows poor

performance especially between the frame numbers 180−200.

From Fig.3 it can be observed that though there is rapid motion

frames are not updated frequently. A possible solution could

be to derive more robust thresholding scheme that determines

the frame transmission.

0 5

1
0

1
5

2
0

2
5

50

51

Frame no

S
N
R

[d
B
]

SNR without skipping
SNR with keyframe transmission

1

(a)Stationary mode

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

20

25

30

35

40

45

50

55

Frame no

S
N
R

[d
B
]

SNR without skipping
SNR with keyframe transmission

1

(b)Hover mode

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

10

15

20

25

30

35

40

45

50

55

Frame no

S
N
R

[d
B
]

SNR without skipping
SNR with keyframe transmission

1

(c)Flight mode

Fig. 3. SNR comparison for selective transmission

D. CPU utilization and power consumption

As mentioned before, the firmware onboard the AR Drone is

processor heavy and on average consumes ≈ 47% of the CPU

when the drone is not in flight. In terms of power it consumes

0.26A which corresponds to 3.13 W (operating voltage of

12V ). At 10 fps, our proposed method (without firmware)

utilizes ≈ 44% of the CPU for M/N = 0.5. The power

consumed in this case is 2.88W (0.24A). We attribute this

to efficient use of NEON instructions applied by the FFTW

library that provide superior performance without increasing

the clock frequency.

IV. CONCLUSION

We have shown that it is possible to effectively reduce

the image data transmitted using compressive sensing while

still using current communication infrastructure. The random

sensing of the image data was implemented on-board an

embedded processor like ARM by carefully partitioning while

reconstructing the data at the decoder(ground station). We have

also shown the feasibility of using compressed sensed data

statistics on-board UAV to decide on a drastic scene change.

While 802.11n used here as an example, does provide

enough bandwidth to transmit images even without CS based

encoding we believe our method is relevant as it can easily

be adapted to other communication protocols that provide

lower bandwidth as well as sensors that produce more data.

We further look to refine the method of selective frame

transmission as helps to track a scene change on board thereby

facilitating a significant reduction in the data that needs to be

transmitted.

REFERENCES

[1] I Sa and P Corke, “Vertical infrastructure inspection using a quadcopter
and shared autonomy control,” Field and Service Robotics, pp. 219–232,
2014.

[2] D. Henkel and T. Brown, “On controlled node mobility in delay-tolerant
networks of unmanned aerial vehicles,” 2006.

[3] Md R Haque, M Muhammad, D Swarnaker, and M Arifuzzaman,
“Autonomous quadcopter for product home delivery,” in 2014 In-

ternational Conference on Electrical Engineering and Information &

Communication Technology. IEEE, 2014, pp. 1–5.
[4] D. Giustiniano M. Asadpour and K.A. Hummel, “From ground to aerial

communication: Dissecting wlan 802.11n for the drones,” in Proceedings

of the 8th ACM international workshop on Wireless network testbeds.
ACM, 2013, pp. 25–32.

[5] M.S. Sharawi, D.N. Aloi, and O.A. Rawashdeh, “Design and implemen-
tation of embedded printed antenna arrays in small uav wing structures,”
Antennas and Propagation, IEEE Transactions on, vol. 58, pp. 2531–
2538, Aug. 2010.

[6] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol.
52, no. 4, pp. 1289–1306, April 2006.

[7] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[8] Thong T. Do, Lu Gan, Nam H. Nguyen, and Trac Tran, “Fast and
efficient compressive sensing using structurally random matrices,” IEEE

Trans. on Signal Prcoessing, vol. 60, no. 2, pp. 139–154, Jan. 2012.
[9] S. J. Wright, R. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction

by separable approximation,” IEEE Transactions on Signal Processing,
vol. 57, no. 7, pp. 2479–2493, July 2009.

[10] PJ Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation and
control technology inside the ar. drone micro uav,” in 18th IFAC World

Congress, 2011, vol. 18, pp. 1477–1484.
[11] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk,

“Signal processing with compressive measurements,” IEEE J. Sel. Topics

on Signal Prcoessing, vol. 4, no. 2, pp. 445–460, April 2010.
[12] Matteo F. and Steven G. J., “The design and implementation of FFTW3,”

Proceedings of the IEEE, vol. 93, pp. 216–231, 2005, Special issue on
“Program Generation, Optimization, and Platform Adaptation”.

[13] Vesperix Corporation, “Building fftw on arm,” 2011.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 207 APSIPA ASC 2015




