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Abstract—In the automatic analysis of a tennis game, it is
important to detect some anomalous match events, such as “fault
serve” and “ball out”, as these events are crucial in understanding
the progress of a game. Audio information can be used to detect
these events, but it is unreliable, because of the acoustic mismatch
between the training and the test data and interfering noise
caused by spectator applause, players’ yells etc. We present a
framework to detect these events in which audio and visual
information are used both separately and in combination. We
accumulate audio evidence for anomalous events that is based on
audio event classification and pitch estimation, and combine this
with video evidence based on scene segmentation (itself based on
audio ball-hit detection) and estimation of the ball’s trajectory.
To evaluate the effectiveness and robustness of our approach,
we test it on three different tennis matches. Results show that
our approach outperforms several audio-based baselines: the best
performance is an F -score of 61% on the test data.

I. INTRODUCTION

Sports video analysis has attracted considerable research

interest during the past ten years. It is interesting both

because of its rich audio-visual information content, which

also has a strong inherent syntax, and because there are

several useful practical applications of such analysis, such as

highlight extraction[1], tactics analysis[2], computer-assisted

refereeing[3]. Research in this area has also been influential

in information retrieval [4], audio contents analysis [5], and

tracking motion objects [6].

Our long-term goal is to study how to enable a machine

to learn complex human activities by information acquisition

and analysis. In our earlier work in tennis match analysis [7],

we found that the use of multimodal information is essential

for accurate detection of match events. Here, we focus on

the detection of anomalous match events. We choose the

event “ball out”, which occurs whenever, during play, the ball

bounces outside the permitted lines drawn on the court and

brings play to a halt. In tennis, such anomalous match events

are always reported by line judges, and their shouts can be

heard following these events.

There have recently been several studies in the field of

the content analysis using audio information. Some work

[8], [9], [10], has put more focus on audio information. [8]

employed a spectral clustering algorithm to discover the audio

elements. [9] proposed a discriminative feature set for acoustic

event detection according to approximated Bayesian accuracy.

[10] built a two-stage classifier for normal and “excited”

events classification. Our own previous work [12] also tried

to improve the audio event detection with a hierarchical

language model. However, none of this work has addressed

the problem of interfering noise and the acoustic mismatch

between the training and the test data, which we address

here by combining audio and visual information. The paper is

organised as follows: our theoretical framework is introduced

in section 2, in which we describe our approaches to anomaly

events detection in more detail; information about the data

used in this paper is given in section 3; results and analyses

are presented in section 4, and we finally summarise this paper

and discuss our future work in section 5.

II. THEORETICAL FRAMEWORK

Following our previous work [12], we define seven classes

of match events (Ei, 1 ≤ i ≤ 7), which are 1. umpire’s

announcement, 2. commentary, 3. crowd noise, 4. line judge’s

shout, 5. sound of ball hit, 6. electronic beep 7. any audio

event not belonging to the preceding six classes. Equation 1

shows that our aim is to identify the most likely anomalous

events (E∗

anom) according to both audio (Oa) and visual (Ov)

information.

E
∗

anom = max
Ei

Pr(Ei|O
a
, O

v) (1)

Audio information is exploited in two ways: the audio stream

is converted to MFCCs (see Section 3 for details) and a Gaus-

sian mixture model (GMM) is used to model each event class

(Pr(Oa
MFCC |Ei)). In addition, we use Gaussian approxima-

tions of PDFs of estimates of fundamental frequency (F0) ex-

tracted from detected voiced signals (Pr(Oa
F0

|Ei)). Visual in-

formation is processed to form scene models (Pr(Ov
scene|Ei))

that are used to segment the video into two classes, “play-shot”

and “non-play-shot”. In visual sequences classified as “play-

shot”, we estimate the ball trajectory (Pr(Ov
trajectory |Ei)).

Hence equation 1 can be expanded as:

Pr(Ei|O
a
, O

v) ≈Pr(Oa|Ei) ∗ Pr(O
v |Ei) ∗ Pr(Ei)

≈Pr(Oa
MFCC |Ei) ∗ Pr(O

a
F0|Ei)∗

Pr(Ov
scene|Ei) ∗ Pr(O

v
trajectory|Ei) ∗ Pr(Ei)

(2)

where P (Ei) can be viewed as a prior probability of each

event class (set equal in this paper).
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A. Audio likelihood based Detection

As in our previous work on the detection of the sounds

of ball hits [12], we identify the line judge’s shout using a

standard maximum-likelihood framework by searching for the

most likely audio event given the extracted MFCC sequence

and the GMM event models.

To reduce the impact of acoustic mismatch, we employ a

confidence measure (CM). The likelihood of each audio event

class for each frame is estimated using the Gaussian mixture

models of audio events built from the training-data, and the

difference between highest log likelihood (LLK) and the next

highest is used as a CM for that frame. The CM for an event

Ei is the averaged CM of frames (fj) within the range covered

by the event.

CM(Ei) =
1

N

N∑

j=1

(LLK1(f
Ei

j )− LLK2(f
Ek

j )) (3)

The use of this CM provides some immunity from mismatches

between the training- and test-set channel conditions: if the

mismatch is high, then all the likelihoods will be low, but the

overall mis-match will be cancelled out by the differencing

operation, and the differences will be relatively stable within

a range. A suitable threshold for the CM corresponding to a

positive detection of an audio event can be determined from

the training data.
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Fig. 1. Normalised distributions of F0 of the voices from commentators, chair
umpire and line judges.

B. Pitch based Detection

We extract pitch information from the audio by estimating

the “subharmonic-to-harmonic ratio”: a detailed description of

this technique can be found in [11]. Figure 1 shows the distri-

bution of the fundamental frequency (F0) from vocalisations

from the umpire, the commentators and the players and line-

judges. It can be seen that the F0 of the commentators and

chair umpire lies mainly within the range of 100–200 Hz,

while much of the pitch extracted from the line judge calls

is higher than 250 Hz. This difference enables us to coarsely

locate the position of line judge calls on the sound track.

However, there is significant overlap of line judge shouts

with player shouts. To effective distinguish line judges’ shouts

with other audio event classes and other audio interference, we

build pitch based Gaussian mixture models for the line judge

shout and non-line-judge audio classes, which are constructed

using 3-D vectors consisting of the maximal value of F0 and

its values at the start and end points of the pitch contour

corresponding to the event. Audio events with larger likelihood

values computed using the pitch based GMMs trained on the

line judge shout are selected.

Fig. 2. Playshot scene segmentation based on the sound of ball hits and colour
features

C. Scene Segmentation based Detection

Scene segmentation is based on the fact that most anoma-

lous match events occur just before or during rallies. We

divide a tennis video into two scene classes: “play-shot”,

covering frames in which the ball is in play, and “non-play-

shot”, covering other periods. Figure 2 illustrates how we

identify a playshot scene using audio and visual information.

The first pane shows the audio waveform, annotated with

some audio events. The second pane shows (compressed)

the corresponding video frames. The third pane shows the

likelihood of a play-shot sequence, which peaks in the segment

of the signal where the ball-hits are located.

Our approach consists of four steps:

Step1: Locate the visual frames in which ball-hit sounds are

present on the corresponding section of the audio-track;

Step2: Build a visual play-shot model Pr(Ov |Sceneplayshot)
using these selected visual frames ;

Step3: Compute the likelihood values of these selected frames,

and average them to form a mean play-shot likelihood

(µ− playshot). µ− playshot is then used as a thre-

shold for identifying play-shot frames in the video.

Step4: Compute the likelihood values of all other frames

extracted from the video and discard frames whose

likelihood values are less than µ− playshot

The detection performance of ball hits using audio information

is of the order 75%. To train a play-shot visual model, we

divide each frame within a play-shot sequence into 5x5 grids.

A colour histogram is computed for each of these grids and

these are concatenated to generate a visual frame vector. These

vectors are used to train the Gaussian mixture models of “play-

shot”. We finally identify which part of the video belongs to

the playshot scene by selecting those frames whose computed

likelihood is over a threshold determined by the averaged

likelihood value of those frames selected in Step 3.
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Fig. 3. Example of ball tracking

D. Ball Trajectory based Detection

To further improve the detection of the anomalous match

events, we utilise ball trajectory information. We select ten

visual frames ahead of the start of the detected line judges’

shout because such shouts usually occur within about 0.4s of

the ball bouncing, and since our visual frame-rate is 25 frames

per second, 0.4 × 25 = 10. In practice, it is very hard to

accurately locate the position where the ball bounces because

of its small size, occlusion by players, and the complex

visual background. Instead of attempting to locate this position

accurately, as a proxy, we count (using the ball trajectory

information) the number of the above frames in which the ball

is located outside the lines, and divide this by 10 to obtain a

probability that the ball bounced “out”. Our approach hence

contains two main steps:

1) determine the court region by locating all court lines

2) track the ball’s motion and estimate the possibility of

ball travelling outside a valid region.

To accurately find all court lines, we utilise a homography

transform, described by a 3×3 matrix H , to find the mapping

between points in a “virtual” tennis court template and points

in the current frame. The pixel coordinate in the template is

represented by a vector [x y 1]T which is multiplied by H ,

yielding the vector [u v w]T :
[

u
v
w

]

=

[

h11 h12 h13

h21 h22 h23

h31 h32 h33

][

x
y
1

]

(4)

The final target coordinate is (x′, y′) = (u/w, v/w). The

division by w warps the coordinates properly to account

for perspective foreshortening. The elements of H can be

computed by mapping any four points at the corner of the

court to the corresponding points in the court template. The

homography transform thus enables us to further obtain the

coordinates of all junctions of court lines. For a detailed

description of this technique, refer to [13].

To track the ball’s motion we employ the Viterbi algorithm

to search for the most likely trajectory. We treat each ball

candidate (b) in a frame Ft as a “state” and assume that

all ball candidates in the same frame are equally likely.

The observation probability of each candidate O(bi) can be

obtained using the distribution (obtained from the training-

data) of an actual ball’s y-coordinate value in the court, namely

O(bi) = Pr(bi(y)). The transition probability between states

is estimated using the distribution of the distance between

two balls in two adjacent visual frames, Pr(Dt,t−1(bi, bj)),
again obtained from the training-data. A standard Viterbi

search is used to find the most likely ball trajectory [14].

Figure 3shows an example of ball-tracking. 3(a) shows that

multiple ball candidates are present in each frame, even after

removing many false candidates caused by the court lines and

the spectators. Also, some true candidates are missing because

the ball has been blocked by players. 3(b) shows the candidates

after using the Viterbi algorithm, and should be compared with

3(c), which shows the ground truth for comparison. In our

experiments, the ball tracking accuracy can reach 60% (F -

score).

III. DATA AND EXPERIMENTAL SET-UP

We used four different tennis matches, one for training and

the other three for test. Table I gives some basic information

about the videos of these matches. The training data is

TABLE I
DATA

Game Type Dur. (mins.) # line judge

Training Wim-08 Men-single 180 128

T1 AUS-10 Men-single 106 76

T2 US-11 Men-single 82 58

T3 WTA-12 Women-single 62 41

extracted from a Wimbledon Open match, and the test matches

are from the Australian Open (T1), the US Open (T2) and the

WTA Paribas Open (T3). It should be noted that in these three

matches, the court surfaces are all different (carpet, hard, and

clay), the backgrounds are all different and the camera angles

and microphone positions are all different. The soundtracks of

these matches are segmented into short-time frames by a 30-

ms sliding window with a 20-ms overlap. Each audio frame is

be converted into a vector of 39-D MFCCs. As in our previous

work[12], the seven classes of audio events are modelled with

Gaussian mixture models (GMMs). Our evaluation metric is

the Fscore:
Fscore =

2× Precision × Recall

Precision + Recall
(5)

Precision =
#correctly detected anomalous events

#detected anomalous events
(6)

Recall =
#correctly detected anomalous events

# anomalous events in the ground truth
(7)

A “correctly detected” anomalous event means the audio frame

with a maximum likelihood value of the detected event is

located within the manually annotated range of a anomalous

event. Maximum likelihood values of the detected events that

are not within an anomalous event range are regarded as false

positives, and undetected anomalous events are false negatives.

IV. RESULTS ANALYSIS AND FUTURE WORK

We compare seven different methods (M1∼M7) which

combine the techniques introduced in section II.

M1: Audio likelihood based detection only

M2: F0 based detection only

M3: M1 + M2
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Fig. 4. Comparison of detection performances on three test matches with setting different F0 threshold: (a)-T1, (b)-T2, (c)-T3

M4: M2 + Scene Segmentation

M5: M1 + Scene Segmentation

M6: M1 + M2 + Scene Segmentation

M7: M1 + M2 + Scene Segmentation + Ball Trajectory

TABLE II
BEST DETECTION PERFORMANCE (FSCORE, %)

Data M1 M2 M3 M4 M5 M6 M7

T1 21.99 32.03 38.67 54.36 37.74 45.54 63.69

T2 14.34 36.25 46.15 59.68 46.43 59.34 60.16

T3 28.32 33.73 49.59 48.60 41.94 56.18 59.52

Avg. 21.55 34.00 44.80 54.21 42.03 53.68 61.12

Table II shows the best detection performances obtained on

three test matches using these seven methods. M1 (use of audio

likelihoods only) is the worst-performing, due to audio mis-

match between the training- and test-sets. Surprisingly, using

only pitch information (M2) is superior, and using M1 and

M2 in combination (M3) is considerably better than either

technique on its own, because some false audio events with

low F0 are removed. After employing scene segmentation,

we are able to further remove false detections caused by

crowd noise and commentators’ voices, so that M4, M5 and

M6 generally give better performance than M1, M2 and M3

(the exception being M5 compared with M3). M7 takes into

account the ball’s position in the court, and outperforms the

other methods in all cases.

In figure 4, we compare the performances obtained using

M2, M3, M4 and M6 when different fundamental frequency

(F0) thresholds are used, ranging from 50 to 500 Hz. The

threshold of F0 works as a pre-filter to filter out possible

interference from the chair umpire speech and commentators’

speech prior to applying our algorithms. We find the best

performance is generally obtained within the range between

250 and 350 Hz, and the F-score is reduced considerably when

the threshold is set over 400 Hz, which is what would be

expected from Figure 1. M6 (audio likelihoods + F0 detection

+ scene segmentation) is more robust than M4 (F0 detection +

scene segmentation) because the audio likelihood is a strong

indicator of the position of an anomalous event.

V. SUMMARY AND DISCUSSION

We have proposed some novel techniques of integrating

audio and visual information to give better detection of events

in a tennis match and shown that this integration gives

considerably better performance in the face of acoustic mis-

match between audio soundtracks and interfering noise than

using purely audio information. The techniques couple the two

modalities tightly: for instance, visual scene shot segmentation

is based on detection of a rally in the audio domain. They

were trained and tested on matches played in different venues

with different backgrounds, court-surfaces and camera and

microphone positions, but perform quite robustly. Our future

work will focus more on how more accurately locating ball’s

potion using the visual information and how more effectively

fusing multimodal information.
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